

Study of Excited Ξ Baryons in pp-Collisions with the PANDA Detector

FAIRNESS2016 Conference – Garmisch Partenkirchen, February 17th 2016 | Jennifer Pütz

Outline

- Motivation
- Event Generation
- The PANDA Detector
- Preliminary reconstruction
- Background
- Summary and Outlook

Why is baryon spectroscopy interesting?

- We want to understand the strong interaction
- Elementary particles of the strong interaction are quarks and gluons
- But observed particles are hadrons = baryons & mesons

 Open questions: 3-quark or quark-diquark structure? Baryon and meson dynamics?

Why is the spectroscopy of double strange baryons interesting?

 Intense worldwide effort to study the nucleon (and Δ) spectrum with photo-induced reactions

N	Δ	Λ	Σ	Ξ	Ω
10	7	8	5	1	0

- Much less information on Λ/Σ, Ξ and Ω baryons
- Study of Ξ spectrum gives independent information
- Allows to verify if the picture deduced from N*, Δ studies is correct

February 17th 2016

Jennifer Pütz j.puetz@fz-juelich.de

Why with pp collisions at PANDA?

- PANDA gives simultaneous access to excited states for baryons and anti-baryons in pp → baryon + antibaryon + meson(s)
- Large cross sections (e.g. μb cross section for $\Xi \overline{\Xi}$) allows collection high-statistics in reasonable time
- Systematic error check

Event Generation

- $\overline{p}p \rightarrow \Xi^{-}(1820) \overline{\Xi}^{+}$ and charge conjugate
- 1.5 million signal events
- p_p = 4.6 GeV/c (approx. 100 MeV above production threshold)
- Assuming a branching ration of 100% for $\Xi^{-}(1820) \rightarrow \Lambda + K^{-}$
- Mass of Ξ[−](1820): $m_{\pm(1820)} = 1.823 \text{ GeV/c}^2$
- Width: Γ = 24 MeV/c²
- Spin Parity: 3/2- (?)

The **PANDA** Detector

Physics program

- Baryon spectroscopy
- Meson spectroscopy
- QCD dynamics
- Nucleon structure, em. processes
- Hadrons in nuclei
- Hypernuclear physics

Detector capabilities

- 4 π acceptance
- High tracking resolution
- Good particle identification

The **PANDA** Detector

n

Detector capabilities

- 4π acceptance
- High tracking resolution
- Good particle identification

Jennifer Pütz j.puetz@fz-juelich.de р

Reconstruction

- Simulation of transport through the detector
- Transport and reconstruction of particles is done with the PandaRoot framework
- Continuous development and improvement of framework
- This work is at starting point and still under development!

All following results are preliminary!!!

- Used ideal pattern recognition and "best" particle identification (PID)
- Selected only final state particles with N_{Hits} ≥ 4 in at least one of the inner tracking detector (MVD, STT, GEM)
- Reconstruction efficiency for final state particles:

Reco. eff. pp→Ξ* Ξ		Reco	Reco. eff. pp→∃ ∃*		
particle	Reco. eff. [%]	particle	Reco. eff. [%]		
π	84	π*	83		
$\pi_2^{+}(\overline{\Lambda}^0)$	83	$\pi_2^{-}(\Lambda^0)$	83		
π_1^+ ($\overline{\Xi}$)	81	$\pi_{1}^{-}(\Xi)$	80		
K⁻	79	K⁺	83		
р	84	р	81		
p	78	p	81		

Reconstruction of $\Lambda \& \overline{\Lambda}$

 Select candidates within a mass window
 of m = (1.116 ± 0.15) GeV/c²

d a

- Perform kinematic vertex fit: (Fit tracks of daughter particles to common vertex)
- Kinematic fit with mass constraint is performed on fitted candidate
- Select candidate with vertex fit prob > 0.01 and mass fit prob > 0.01
- More than one candidate: select candidate with smallest χ²

Ξ^{}(1820)

π¹

 π_2^+

р

Mitglied der Helmholtz-Gemeinschaft

Fitted mass:

Mitglied der Helmholtz-Gemeinschaft

- M₌₊ = 1.322 GeV/c²; σ = 3.96 MeV/c²
- M₌ = 1.322 GeV/c²; σ = 4.00 MeV/c²
- Errors are dominated by systematic effects

π¹ Reconstruction of Ξ (1820): reconstructed mass Mass distribution for Ξ (1820) with vertex cut and mass cut

р

_Ξ[−](1820)

 π_2^+

February 17th 2016

Mitglied der Helmholtz-Gemeinschaft

Jennifer Pütz j.puetz@fz-juelich.de

pp - System

• Combine Ξ -(1820) and $\overline{\Xi}$ +

of Ξ⁻(1820) Ξ⁺

- Perform four momentum constraint fit
- Select candidates with p>0.01

Mitglied der Helmholtz-Gemeinschaft

Background

- 15 million events were generated with Dual Parton Model (DPM)
- For comparison with signal events scaling factor is needed

$$B = rac{N_{
m sig}^{
m gen}/\sigma_{
m sig}}{N_{
m bg}^{
m gen}/\sigma_{
m bg}}$$
 = 6000

Significance is defined as

$$S = \frac{N_{\rm sig}}{\sqrt{N_{\rm sig} + N_{\rm bg} \cdot B}}$$

$$\sigma_{_{sig}}$$
 = 1 µb
 $\sigma_{_{bg}}$ = 60 mb

Particle	N_{sig}	N _{bg} * B	S
٨	786,243	1.6·10 ⁹	20
$\overline{\Lambda}$	711,820	744.4·10 ⁶	26
<u>=</u> +	302,681	18.4·10 ⁶	70
Ξ ⁻ (1820)	490,672	1.8·10 ⁶	325
Ξ ⁻ (1820) Ξ ⁺	74,523	<6000	> 263*

* assuming at least 1 background event

- Signal-to-background ratio*: 12 : 1
- More background events for higher statistics are needed

Summary & Outlook

- Simulated 1.5 million signal events for $\overline{p}p \rightarrow \Xi(1820)^{-}\overline{\Xi}^{+}$ and its c.c.
- Reconstructed Mass of $\Xi(1820)$ in agreement with input value
- Number of
 - background events after all cuts: $N_{bg} < 6000$
 - Signal events after all cuts N_{sig} = 75k
- Lower limit for significance: S > 263
- Intermediate state of analysis looks promising
- More background simulation will be done as next step
- Partial wave analysis of $\Lambda \text{ K}$ $\overline{\Xi}$ (& c.c) final state will be explored

Backup

Ideal Tracking and ideal PID

Ideal tracking:

- hit points caused by a particle track are grouped based on the generated particle information
- Ideal PID:
 - true particle gets the probability P = 1, others P = 0.
 - 'best': particle with highest probability is chosen.

Simulation: Generated Events

Mitglied der Helmholtz-Gemeinschaft

Λ: transverse vs. Longitudinal momentum

R/cm

Mitglied der Helmholtz-Gemeinschaft

Vertex resolution $\overline{\Xi}^+$

Mass distribution $\Xi^{-}(1820)$ for different cuts

February 17th 2016