Flow harmonics of Au-Au collisions at 1.23 AGeV with HADES

Behruz Kardan

for the HADES Collaboration

FAIRNESS 2016 Garmisch-Partenkirchen

Outline

- Collective Flow
- Flow-Analysis Methods
- HADES and Au+Au 1.23AGeV Data
- Initial state calculations with Glauber Monte Carlo
 - Centrality and eccentricity

Heavy-Ion Reaction

Collective Flow

v2 - Elliptic Flow

Higher Order Flow

Behruz Kardan

FAIRNESS 2016 - Garmisch-Partenkirchen

High Acceptance Di-Electron Spectrometer

- Fixed-target experiment located at GSI, Darmstadt
- Large acceptance
 - symmetric azimuthal coverage
 - 18°-85° in polar angle
- Tracking system and magnetic spectrometer
 - 4 planes of low-mass mini-drift chambers (MDC)
 - superconducting toroidal magnet
- Forward Wall
 - reaction plane reconstruction

Au-Au at 1.23AGeV - April 2012

Behruz Kardan

FAIRNESS 2016 - Garmisch-Parconnert

Event Plane Reconstruction

Analysis-note: A. Sadovsky

v1, v2 and Higher Order Flow in HADES

proton-flow semi-central 6.3-21% peripheral 21-30.9% **v2(**ψ₁) **v1(**ψ₁) **v3(ψ**₁) 0.1 0.04 0.01 HADES Preliminary **HADES Preliminary HADES** Preliminary **HADES Preliminary** Au+Au 1.23 GeV/u 0.03 Au+Au 1.23 GeV/u Au+Au 1.23 GeV/u Au+Au 1.23 GeV/u 0.05 0.02 0.005 0.01 80 50 20 -0.01 -0.05 -0.02 -0.005 b. < 0.25 < 0.25 0.25 < b, < 0.45</p> 0.25 < b_a < 0.45</p> 0.25 < b, < 0.45 0.25 < b, < 0.45 -0.03 0.45 < b, < 0.6 0.45 < b, < 0.6 0.45 < b. < 0.6 0.45 < b, < 0.6 -0.04-0.01 -0. -0.6 -0.4 -0.2 -0.5 -0.6 -0.4 -0.2 0.2 0.4 0.6 0 0.5 -1 -0.5 0.5 -1 0 0 0

Open symbols: W. Reisdorf et. al. FOPI collab., Nucl. Phys. A 876 (2012) v1 and v2 components are in agreement with FOPI data

y_{cm}

demonstrates that statistics sufficient for higher order

please note all flow components relative to spectator reaction plane $(\psi_1)!$

y_{cm}

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

2

y_{cm}

most central 0-6.3%

v4(ψ₁)

0.2 0.4 0.6

y_{cm}

Multi-Particle Flow-Analysis Methods

- no eventplane determination needed
- Pair-wise correlation
 - combinatorial background (estimation with mixed event/ like sign)
- Two- & Multi-Particle **Cumulant** v_n {2}, v_n {3}, v_n {4}
 - detect non-flow via differences $v_n{2} \neq v_n{4}$
- Lee-Yang Zeroes $V_n\{\infty\}$
 - all-particle correlation with generating function
- allow to separate non-flow effects:
 - momentum conservation, HBT, resonance decays, final state interactions, etc.

Flow Cumulant Measurements

- Lee-Yang Zero and 4-particle cumulant compatible
- non-flow effects seen but small

HADES: ≳10⁸ events each centrality class

Flow Cumulant Measurements: Higher Orders

Energy-dependence v₃²{2}

y_{pp} A Y

Glauber MC

pp

Glauber Monte Carlo Calculations

- Calculation event-by-event
- Generation of nuclei (energy independent) individual nucleon distributed according
- Collision Process (energy dependent)
 - straight-line trajectories (eikonal approximation)
 - nucleons interact inelastic cross section σ_{NN}
 - nucleons are tagged as wounded or spectator
- Geometric Quantities calculated

Centrality Determination

modeled by GlauberMC

Fluctuations of the Participant Plane

Higher Order Participant Plane Angles

Correlations Participant Plane Angles

- "cross-talk" between harmonics of participant plane angles
- correlation between even $\psi 2:\psi 4$ and odd $\psi 3:\psi 5$

Conclusion

- Flow Measurements of v1 and v2 with HADES
 - good agreement with existing data
- Non-Flow Effects
 - small but relevant
 - measurements requeres other methods beyond EP method
- Higher Order Harmonics
 - systematic study of v3 at 1.23 AGeV ongoing
 - provide new insights in to the properties of extrem matter
- Initial state calculations with Glauber Monte Carlo

HADES Collaboration

Thank you for your attention!

v2 - Elliptic Flow

Flow-Analysis Methods

- "standard" **EventPlane** v_n{EP}
 - oriented to symmetry plane(Ψ₁ or Ψ₂) of spectator or reference particle
 - correction for eventplane resolution needed
- Scalar Product vn{SP}
 - uses the magnitude of the flow vector as weight
 - correction for eventplane resolution included
- Pair-wise correlation
 - combinatorial background (estimation with mixed event/ like sign)
- Two- & Multi-Particle **Cumulant** v_n {2}, v_n {3}, v_n {4}
 - no additional eventplane determination needed
- Lee-Yang Zeroes $V_{n}\{\infty\}$
 - all-particle correlation with generating function

$$egin{aligned} rac{dN}{d(\phi-\Phi_R)} \propto (1+\sum_{n=1}^\infty 2v_n\cos(n(\phi-\Phi_R))), \ v_n\{EP\} \equiv rac{\langle\cos n(arphi-\Psi_R)
angle}{\langle\cos n\Delta arphi_R
angle}, \end{aligned}$$

$$\frac{dN^{pairs}}{d\Delta\phi} \propto \left(1 + \sum_{n=1}^{\infty} 2\nu_n^2 \cos(n\Delta\phi)\right) \qquad C(\Delta\phi) = \frac{N_{cor}(\Delta\phi)}{N_{uncor}(\Delta\phi)}$$

$$v_n\{2\}^2 = \langle \cos[n(\phi_1 - \phi_2)] \rangle$$

$$G^{\theta}(ir) = \left\langle \exp\left(ir\sum_{\nu}\omega_{\nu}\cos(\varphi_{\nu}-\theta)\right) \right\rangle_{\text{events}}$$

Behruz Kardan