$Z_c(3900)/Z_c(3885)$: what have we really seen?

[M. A., F. K. Guo, C. Hidalgo-Duque, J. Nieves, arXiv:1512.03638. Phys. Lett. B (to appear)]

Miguel Albaladejo (IFIC, Valencia)

FAIRNESS 2016 Garmisch-Partenkirchen, Feb. 15, 2016

In collaboration with: F. K. Guo (Beijing) C. Hidalgo-Duque (Valencia) J. Nieves (Valencia)

Outline

2 Formalism

Outline

1 Introduction

Formalism

3 Results

Introduction	Formalism	Results	Improvements	Conclusions
0000				
Light sector				

Light sector before the heavy...

Take three examples from the light sector:

- **1** Scalar-isoscalar sector in 1 2 GeV: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ (and $f_0(1790)$)
- Pseudoscalar sector 1 2 GeV
- 3 Light scalar sector: $f_0(500), f_0(980), a_0(980), \kappa$

Scalar-isoscalar in 1 - 2 GeV

- Three candidates for the two isoscalars in the nonet: $f_0(1370), f_0(1500), f_0(1710)$
- Again, they can be dynamically generated within the Unitary Chiral Approach (*PP* interactions + unitarity)
- One extra member makes it a candidate to be a glueball ($f_0(1500)$ and $f_0(1710)$)
- (See the note of the PDG about the scalar sector)

Introduction	Formalism	Results	Improvements	Conclusions
0000				
Light sector				

Light sector before the heavy...

Take three examples from the light sector:

- **1** Scalar-isoscalar sector in 1 2 GeV: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ (and $f_0(1790)$)
- Pseudoscalar sector 1 2 GeV
- 3 Light scalar sector: $f_0(500), f_0(980), a_0(980), \kappa$

Introduction	Formalism	Results	Improvements	Conclusions
0000				
Light sector				

Light sector before the heavy...

Take three examples from the light sector:

- **1** Scalar-isoscalar sector in 1 2 GeV: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ (and $f_0(1790)$)
- Pseudoscalar sector 1 2 GeV
- 3 Light scalar sector: $f_0(500), f_0(980), a_0(980), \kappa$

Light scalar sector

- A full nonet (no extra members): $\sigma \equiv f_0(500), f_0(980), a_0(980), \kappa$
- They can be dynamically generated within the Unitary Chiral Approach (PP interactions + unitarity)
- Still, what are they?
 - $\circ\,$ MIT Bag Model predicts tetraquark 0 $^{++}$ nonet, with masses $m_\sigma\simeq$ 600 MeV
 - For the σ meson, $\sqrt{\langle r^2 \rangle_s^{\sigma}} = 0.44$ fm, compare with $\sqrt{\langle r^2 \rangle_s^{\pi}} = 0.65$ fm. [M.A., J.A. Oller, Phys.Rev. D 86,034003(2012)]
 - The σ meson is very compact. Tetraquark?

Introduction	Formalism	Results	Improvements	Conclusions
Charmonium-like sector				

General

• Two recent reviews (2015):

- [Olsen, Front. Phys. 10, 101401]
- [Chen et al.,arXiv:1601.02092]
- All the *cc* states predicted by QM below *DD* threshold have been found
- In 2003, X(3872) is discovered [Belle Collab., PRL,91,262001]
 - Very close to $D^0 \overline{D}^0$ threshold.
 - Close to (but lower) $\chi_{c1}(2^3P_1)$.

• Lattice QCD:

[Prelovsek, Leskovec, PRL,111,192001] candidate for X(3872) only if $c\bar{c} + D\bar{D}^*$ components are considered **together**

Introduction	Formalism	Results	Improvements	Conclusions
Introduction: experimental information	on on $Z_c(3885) / Z_c(3900)$			

Introduction: experimental information on $Z_c(3885)/Z_c(3900)$

• **Z_c(3900)** first seen by **BESIII** and **Belle** Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$

[Phys. Rev. Lett. 110, 252001 (2013), Phys. Rev. Lett. 110, 252002 (2013)]

- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi \pi^+\pi^-$ [Phys. Lett. B 727, 366 (2013)]
- **BESIII** analyses $e^+e^- \rightarrow Y(4260) \rightarrow \overline{D}^*D\pi$, and sees $Z_c(3885)$ in \overline{D}^*D invariant mass spectrum. $J^{P} = 1^+$ favoured. [Phys. Rev. Lett. **112**, 022001 (2014)]
- **BESIII** confirms $Z_c(3885)$ in \overline{D}^*D spectrum at different e^+e^- c.m. energies [Phys. Rev. D **92**, 092006 (2015)]
- If they are the same object, **Ratio**: $\frac{\Gamma(Z_c \rightarrow D\bar{D}^*)}{\Gamma(Z_c \rightarrow J/\psi\pi)} = 6.2 \pm 2.9$

M. Albaladejo (IFIC, Valencia): Z_C (3900) / Z_C (3885): what have we really seen?

Introduction	Formalism	Results	Improvements	Conclusions
0000				
Introduction: theoretical speculation				

Introduction: theoretical speculation

- "One of the most interesting resonances": couples strongly to charmonium (~ cc) and yet it has charge (~ ud). Minimal quark constituent is four [ccud].
- Many different interpretations have been given: [Olsen, Front. Phys. 10, 101401][Chen et al.,arXiv:1601.02092]
 - Tetraquark
 - D

 [¯]D*D molecular state
 - Simply a kinematical effect
 - Hadrocharmonium
 - It has also been searched for in lattice QCD

"Tetraquark"

What is still missing?

A joint study of both reactions in which the Z_c

structure has been seen

M. Albaladejo (IFIC, Valencia): $Z_c(3900)/Z_c(3885)$: what have we really seen?

FAIRNESS 2016. Garmisch-Partenkirchen, Feb. 15, 2016

Introduction	Formalism	Results	Improvements	Conclusions
0000				
Introduction: theoretical speculation				

Introduction: theoretical speculation

- "One of the most interesting resonances": couples strongly to charmonium (~ cc) and yet it has charge (~ ud). Minimal quark constituent is four [ccud].
- Many different interpretations have been given: [Olsen, Front. Phys. 10, 101401][Chen et al.,arXiv:1601.02092]
 - Tetraquark
 - D

 ^{*}D molecular state
 - Simply a kinematical effect (ruled out)
 - Hadrocharmonium
 - It has also been searched for in lattice QCD

"Tetraquark"

What is still missing?

A joint study of both reactions in which the Z_c

structure has been seen

M. Albaladejo (IFIC, Valencia): $Z_c(3900)/Z_c(3885)$: what have we really seen?

FAIRNESS 2016. Garmisch-Partenkirchen, Feb. 15, 2016

Outline

Introduction

3 Results

Introduction	Formalism	Results	Improvements	Conclusions
	0000			
Coupling $\bar{D}^* D$ and $J/\psi \pi$	channels			

Coupling $ar{D}^*D$ and $J/\psi\pi$ channels

Coupled channel formalism is needed, because $Z_c(3900)$:

- is expected to be dynamically generated in \overline{D}^*D channel (#2),
- but it is also seen in $J/\psi\pi$ channel (#1).

$$T = (\mathbb{I} - V \cdot G)^{-1} \cdot V ,$$

 $V_{ij} = 4\sqrt{m_{i1}m_{i2}}\sqrt{m_{j1}m_{j2}} e^{-q_i^2/\Lambda_i^2} e^{-q_j^2/\Lambda^2} C_{ij} ,$

- G(E) are loop functions (Regularized with standard gaussian regulator)
- $J/\psi\pi \rightarrow J/\psi\pi$: known to be tiny, $C_{11} = 0$.
- $\bar{D}^*D \to J/\psi\pi$: we make the simplest possible assumption, $C_{12} \equiv \widetilde{C}$ (constant)
- $\bar{D}^*D \rightarrow \bar{D}^*D$: In a momentum expansion (HQSS), simply a constant, $C_{22} \equiv C_{12}$.
- **Problem:** no resonance in the complex plane above threshold with only constant potentials (even with coupled channels).
- We introduce some energy dependence,

$$C_{22}(E) = C_{1Z} + b (E - m_D - m_{D^*}).$$

Introduction	Formalism	Results	Improvements	Conclusions
	0000			
Amplitudes: $Y(4260) \rightarrow$	$(1/2/2\pi^{-})\pi^{+}(D^{*}-D^{0})\pi^{+}$			

Amplitudes: $Y(4260) ightarrow (J/\psi\pi^-)\pi^+, (D^{*-}D^0)\pi^+$

- s (Mandelstam) \bar{D}^*D invariant mass squared
- *I*₃(*s*): three meson loop propagator
- \bar{D}^*D rescattering enters through $T_{22}(s)$

•
$$q_{\pi}^{2}(s) = \lambda(M_{Y}^{2}, s, m_{\pi}^{2})/(4M_{Y}^{2})$$

Introduction	Formalism	Results	Improvements	Conclusions
	0000			
Amplitudes: Y(4260)	$(1/2/2\pi^{-})\pi^{+}(D^{*}-D^{0})\pi^{+}$			

Amplitudes: $Y(4260) ightarrow (J/\psi\pi^-)\pi^+, (D^{*-}D^0)\pi^+$

- The decay proceeds mainly through $[T_{12}(s)]$ $Y \rightarrow (\bar{D}^*D)\pi \rightarrow (J/\psi\pi)\pi$
- Some direct production included through α
- *s*, *t* (Mandelstam) $J/\psi\pi^-$, $J/\psi\pi^+$ invariant mass squared

$$\begin{aligned} \left|\overline{\mathcal{M}_{1}}(s,t)\right|^{2} &= \left|\tau(s)\right|^{2} q_{\pi}^{4}(s) + \left|\tau(t)\right|^{2} q_{\pi}^{4}(t) + \frac{3\cos^{2}\theta - 1}{4} \left(\tau(s)\tau(t)^{*} + \tau(s)^{*}\tau(t)\right) q_{\pi}^{2}(s) q_{\pi}^{2}(t) ,\\ \tau(s) &= \sqrt{2} l_{3}(s) T_{12}(s) + \alpha \end{aligned}$$

Introduction	Formalism	Results	Improvements	Conclusions
	0000			
Events distributions and Ex	perimental data			

Events distributions and Experimental data

• Events distributions \mathcal{N}_i :

$$\mathcal{N}_i(s) = K_i \left(\mathcal{A}_i(s) + \mathcal{B}_i(s) \right)$$

 $\mathcal{A}_i(s) = \int_{t_{i,-}}^{t_{i,+}} dt \left| \overline{\mathcal{M}_i}(s,t) \right|^2$

- *K_i* (unknown) global normalization constants
- *B_i* are background functions (parametrized as in the experimental analyses)
- "Branching ratio":

$$R_{
m exp} = rac{\Gamma\left(Z_c
ightarrow Dar{D}^*
ight)}{\Gamma\left(Z_c
ightarrow J/\psi\pi
ight)} = 6.2 \pm 2.9$$

• Theoretically estimated as the (physical) ratio of areas around *Z_c*(3900) mass

$$R_{\rm th} = \frac{\int ds \mathcal{A}_2(s)}{\int ds \mathcal{A}_1(s)}$$

M. Albaladejo (IFIC, Valencia): Z_C (3900) / Z_C (3885): what have we really seen?

FAIRNESS 2016. Garmisch-Partenkirchen, Feb. 15, 2016

Outline

Introduction

Formalism

Introduction	Formalism	Results	Improvements	Conclusions
Results: comparison with experiment	:(s)			

Results: comparison with experiment(s)

Λ_2 (GeV)	C_{1Z} (fm ²)	<i>b</i> (fm ³)	\tilde{C} (fm ²)	χ^2/dof	R _{th}
1.0	$-0.19 \pm 0.08 \pm 0.01$	$-2.0 \pm 0.7 \pm 0.4$	$0.39 \pm 0.10 \pm 0.02$	1.02	$6.0\pm3.5\pm0.5$
0.5	$+0.01\pm0.21\pm0.03$	$-7.0 \pm 0.4 \pm 1.4$	$0.64 \pm 0.16 \pm 0.02$	1.09	$6.5\pm3.6\pm0.2$
1.0	$-0.27 \pm 0.08 \pm 0.07$	0 (fixed)	$0.34 \pm 0.14 \pm 0.01$	1.31	$10.3\pm9.0\pm1.1$
0.5	$-0.27 \pm 0.16 \pm 0.13$	0 (fixed)	$0.54 \pm 0.16 \pm 0.02$	1.36	$10.9\pm9.0\pm2.5$

- Four different fits: $b = \{ free, 0 \}, \Lambda_2 = \{ 0.5, 1.0 \}$ GeV
- Only the T-matrix parameters are shown (not shown: normalization, ...)
- All fits have $\hat{\chi}^2 \simeq 1$ ($\simeq 1.4$ for b = 0), and are within the error band of the best one
- Reproduction of the data is excellent

Introduction	Formalism	Results	Improvements	Conclusions
Results: comparison with experiment	:(5)			

Results: comparison with experiment(s)

Λ_2 (GeV)	C_{1Z} (fm ²)	<i>b</i> (fm ³)	\tilde{C} (fm ²)	χ^2/dof	R _{th}
1.0	$-0.19 \pm 0.08 \pm 0.01$	$-2.0 \pm 0.7 \pm 0.4$	$0.39 \pm 0.10 \pm 0.02$	1.02	$6.0\pm3.5\pm0.5$
0.5	$+0.01\pm 0.21\pm 0.03$	$-7.0 \pm 0.4 \pm 1.4$	$0.64 \pm 0.16 \pm 0.02$	1.09	$6.5\pm3.6\pm0.2$
1.0	$-0.27 \pm 0.08 \pm 0.07$	0 (fixed)	$0.34 \pm 0.14 \pm 0.01$	1.31	$10.3\pm9.0\pm1.1$
0.5	$-0.27 \pm 0.16 \pm 0.13$	0 (fixed)	$0.54 \pm 0.16 \pm 0.02$	1.36	$10.9\pm9.0\pm2.5$

- Four different fits: $b = \{ free, 0 \}, \Lambda_2 = \{ 0.5, 1.0 \}$ GeV
- Only the T-matrix parameters are shown (not shown: normalization, ...)
- All fits have $\hat{\chi}^2 \simeq 1$ ($\simeq 1.4$ for b = 0), and are within the error band of the best one
- Reproduction of the data is excellent

Besults: comparison with a	vacuiment/c)	0000		
		00000		
Introduction	Formalism	Results	Improvements	Conclusions

Reflection of threshold and $Z_c(3900)$

Introduction	Formalism	Results	Improvements	Conclusions
Results: Spectroscopy				

Results: Spectroscopy

M_{Z_c} (MeV)	$\Gamma_{Z_c}/2$ (MeV)	Ref.	Final state
3899 ± 6	23 ± 11	▲(BESIII)	$J/\psi \pi$
3895 ± 8	32 ± 18	■(Belle)	$J/\psi \pi$
3886 ± 5	19 ± 5	●(CLEO-c)	$J/\psi \pi$
3884 ± 5	$12\pm~6$	▲(BESIII)	\bar{D}^*D
3882 ± 3	13 ± 5	▲(BESIII)	\bar{D}^*D
$3894\pm 6\pm 1$	$30\pm12\pm6$	$\Box(\Lambda = 1.0 \text{ GeV})$	both
$3886\pm4\pm1$	$22\pm 6\pm 4$	$\Box(\Lambda = 0.5 \text{ GeV})$	both
$3831 \pm 26^{+\ 7}_{-28}$	virtual state	($\Lambda = 1.0$ GeV)	both
$3844 \pm 19^{+12}_{-21}$	virtual state	($\Lambda = 0.5 \text{ GeV}$)	both

Two different scenarios:

(b ≠ 0) Z_c is a D̄*D resonance very close to threshold
 (Differences with experiments are related to Breit-Wigner parametrizations)

2 $(b = 0) Z_c$ is a **virtual state**

In both scenarios,

- Data are very well reproduced
- A single structure (not two) *Z_c*(3885)/*Z_c*(3900) is needed

Introduction	Formalism	Results	Improvements	Conclusions
Results: Spectroscopy				

Bound state, resonance, virtual ...

Well known example: *NN* scattering and the deuteron

- Triplet $({}^{3}S_{1} {}^{3}D_{1})$:
 - $a_t \simeq 5$ fm.
 - In this wave there is a bound state. The deuteron is a well known, really physical particle.

Singlet $({}^{1}S_{0})$:

- $a_s \simeq -24$ fm.
- In this wave there is a virtual state.

- A virtual state does not correspond to a real particle. (Wavefunction not localized.)
- It produces effects at the threshold similar to those of a bound state or a nearby resonance.

Provides Constructions				
		00000		
Introduction	Formalism	Results	Improvements	Conclusions

Complex plane & poles: First scenario (resonance)

• Pole located at 3894 – *i*30 MeV

- Plot: unphysical Riemann sheet connected to the physical one above $D^* \overline{D}$
- Shift of the pole towards higher energies (interference!)

Introduction	Formalism	Results	Improvements	Conclusions
		00000		
Posults: Sportroscomy				

Complex plane & poles: First scenario (resonance)

Pole located at 3894 – i30 MeV

- Plot: unphysical Riemann sheet connected to the physical one above $D^*\bar{D}$
- Shift of the pole towards higher energies (interference!)

Outline

Introduction

Formalism

3 Results

4 Improvements

5 Conclusions

Introduction	Formalism	Results	Improvements	Conclusions
Z_{c} (3900) on the lattice			••	

$Z_c(3900)$ on the lattice

- Two recent works:
 - [Prelovsek *et al*, Phys.RevD91,014504(2015)] ($m_{\pi} = 266$ MeV) "no additional candidate"
 - [HAL QCD, arXiv:1602.03465] ($m_\pi \geqslant$ 410 MeV) Virtual poles with very low masses and deep in the complex plane.
- Results are not conclusive (large pion masses, etc...)
- We can predict energy levels in a finite box. It might be helpful to understand these (and future) lattice simulations

Introduction	Formalism	Results	Improvements	Conclusions	
Experimental improvements for Z_{c} (3900)					

Experimental improvements for $Z_c(3900)$

- Better statistics
- Lower "background"
- o double D-tag

New data on $J/\psi\pi$ The spectrum of $J/\psi\pi$ with narrower bins is highly desirable in order to better elaborate on the nature of

Outline

Introduction

Formalism

3 Results

Introduction 0000	Formalism	Results	Improvements	Conclusions ●○
Conclusions (this work)				

Conclusions (this work)

- $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for "tetraquark"
- We have presented the first simultaneous study of the two decays $(Y(4260) \rightarrow J/\psi \pi \pi, \overline{D}^* D \pi)$ in which $Z_c(3900)$ is seen
- Data are well reproduced in all fits ($\hat{\chi}^2\simeq$ 1)
- Two different scenarios are found:
 - (1) $(b \neq 0) Z_c(3900)$ is a \overline{D}^*D resonance
 - (2) $(b = 0) Z_c(3900)$ is a virtual state
- In any case, a single structure for $Z_c(3885)/Z_c(3900)$ is needed.
- Improved data on J/ $\psi\pi$ invariant mass spectrum are necessary

Introduction 0000	Formalism	Results	Improvements	Conclusions
Conclusions (general)				

Conclusions (general)

- Charmonium spectrum, well known below $D\bar{D}$ threshold.
- Since 2003, the charmonium(-like) spectrum increases continuously (≃ 1 state/year), but we do not fully understand: there are cc̄, there are meson-meson molecules, there are tetraquarks, and many others.
- They must be **mixing**, specially around thresholds.
- Lattice still must go down to physical masses.
- We shall all be studying Heavy Quark Physics...

Introduction 0000	Formalism	Results	Improvements	Conclusions
Conclusions (general)				

Conclusions (general)

- Charmonium spectrum, well known below $D\overline{D}$ threshold.
- Since 2003, the charmonium(-like) spectrum increases continuously (≃ 1 state/year), but we do not fully understand: there are cc̄, there are meson-meson molecules, there are tetraquarks, and many others.
- They must be mixing, specially around thresholds.
- Lattice still must go down to physical masses.
- We shall all be studying Heavy Quark Physics...

 $Z_c(3900)/Z_c(3885)$: what have we really seen?

[M. A., F. K. Guo, C. Hidalgo-Duque, J. Nieves, arXiv:1512.03638. Phys. Lett. B (to appear)]

Miguel Albaladejo (IFIC, Valencia)

FAIRNESS 2016 Garmisch-Partenkirchen, Feb. 15, 2016

Thanks for your attention

Introduction	Formalism	Results	Improvements	Conclusions		
	A. Masoni, C. Cicalo and G. L. Usai, J. Phys. G G 32 , R293 (2006).					
M. S. Chanowitz, Phys. Rev. Lett. 46 , 981 (1981).						
	K. Ishikawa, Phys. Rev. Lett. 46 , 978 (1981).					
	F. E. Close, G. R. Farrar and Z. p. Li, Phys. Rev. D 55 , 5749 (1997).					
	E. Klempt and A. Zaitsev, Phy	rs. Rept. 454 , 1 (200	07).			
	JJ. Wu, XH. Liu, Q. Zhao an	id BS. Zou, Phys. I	Rev. Lett. 108 , 081803	(2012).		