On the nature of $K_0^*(800)$

Milena Sołtysiak¹

F. Giacosa^{1,2}, T. Wolkanowski²

¹ Jan Kochanowski University, Kielce ² Goethe University Frankfurt

Garmisch-Partenkirchen, 16 February 2016

Workshop for young scientists with research interests focused on physics at FAIR 14-19 February 2016, Garmisch-Partenkirchen

Outline

Motivation

- Characteristics of vector kaon K*(892)
- Ocharacteristics of scalar kaons $K_0^*(800)$ and $K_0^*(1430)$
- Conclusions

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Understanding of hadronic resonances.
- Determination of the position of the poles.
- Role of quantum loops.
- Vector kaonic sector: nice example of a Breit-Wigner-type narrow resonance (*K**(892)).
- Investigation of the scalar kaonic sector, which is more difficult (Two resonances: $K_0^*(1430)$ is very broad but well established, $K_0^*(800)$ is not yet in the summary of PDG).

K*(892)	$I(J^P) = \frac{1}{2}(1^-)$				
K*(892) [±]	hadroproduced mass $m = 891.66 \pm 0.26$ MeV				
K*(892) [±]	in $ au$ decays mass $m=895.5\pm0.8$ MeV				
K*(892) ⁰	mass $m = 895.81 \pm 0.19$ MeV (S = 1.4)				
K*(892) [±]	(*(892) [±] hadroproduced full width $\Gamma = 50.8 \pm 0.9$ MeV				
K*(892) [±]	$(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3$ MeV				
K*(892) ⁰	full width $\Gamma=47.4\pm0.6~\text{MeV}~(\text{S}=2.2)$				
K*(892) DECAY MODES	Fraction (Γ_i/Γ) Confidence level	p (MeV/c)			

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Κπ	~ 100	%	289
KOY	(2.46±0.21	$() \times 10^{-3}$	307
$K^{\pm}\gamma$	(9.9 ±0.9	$) \times 10^{-4}$	309
$K\pi\pi$	< 7	× 10 ⁻⁴ 95%	223

크

イロト イヨト イヨト イヨト

vector kaon K*(892)

Lagrangian:

$$\mathcal{L}_{\nu} = cK^* (892)^+_{\mu} \partial^{\mu} K^- \pi^0 + \dots$$
 (1)

decay width:

$$\Gamma_{K^*}(m) = 3 \frac{\left|\vec{k}_1\right|}{8\pi m^2} \frac{c^2}{3} \left[-M_\pi^2 + \frac{(m^2 + M_\pi^2 - M_K^2)^2}{4m^2} \right] e^{-2\left|\vec{k}_1\right|^2/\Lambda^2}$$
(2)

where:

$$\left|\vec{k_{1}}\right| = \frac{\sqrt{m^{4} + \left(M_{K}^{2} - M_{\pi}^{2}\right)^{2} - 2\left(M_{K}^{2} + M_{\pi}^{2}\right)m^{2}}}{2m}\theta\left(m - M_{K} - M_{\pi}\right)$$
(3)

The scalar part of the propagator of $K^*(892)$:

$$\Delta_{K^*}(p^2 = m^2) = \frac{1}{m^2 - M_0^2 + \Pi(m^2) + i\varepsilon}$$
(4)

where M_0 is the bare mass of the vector kaon and $\Pi(m^2) = Re(m^2) + iIm(m^2)$ is the one-loop contribution.

Milena Sołtysiak (UJK)

On the nature of K_0^* (800)

Feynman diagram

2

Spectral function $d_{K^*}(m)dm$ determines the probability that $K^*(892)$ has a mass between *m* and *m* + *dm*.

 $\int_0^\infty d_{K^*}(m) \mathrm{dm} = 1.$

< 47 ▶

According to the optical theorem, $\text{Im }\Pi(m) = m\Gamma_{K^*}(m)$.

< 3 > < 3</p>

vector kaon $K^*(892)$ Large- N_c study of the resonance

 $c \rightarrow \sqrt{\lambda}c$, $\lambda \equiv \frac{3}{N_c}$ N_c is the number of colors For large- N_c the spectral function tends to a Dirac- δ , as expected.

4 A N

★ ∃ →

vector kaon $K^*(892)$

0.889543 - 0.0278042iFor large N_c the pole tends to the real axis.

Milena Sołtysiak (UJK)

On the nature of K_0^* (800)

vector kaon K*(892) conclusions

- It behaves like a Breit-Wigner resonance.
- one peak one single pole.
- Large– N_c in agreement with $q\bar{q}$.

3 > 4 3

$$I(J^P) = \tfrac{1}{2}(0^+)$$

Mass $m = 1425 \pm 50 \text{ MeV}$ Full width $\Gamma = 270 \pm 80 \text{ MeV}$

K [*] ₀ (1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
Κπ	(93 ±10)%	619	
Κη	(8.6 + 2.7) %	486	

イロト イ団ト イヨト イヨ

K^{*}₀(800) or κ

$$I(J^P) = \frac{1}{2}(0^+)$$

OMITTED FROM SUMMARY TABLE

Needs confirmation. See the mini-review on scalar mesons under $f_0(500)$ (see the index for the page number).

K*(800) MASS

VALU	E (MeV))	EVTS	DOCUMENT ID		TECN	COMMENT
682	±29	OUR A	VERAGE	Error includes sca	le fact	or of 2.	4. See the ideogram below.
826	±49	+49 -34	1338	¹ ABLIKIM	11B	BES2	$J/\psi \to \ \kappa^0_S \kappa^0_S \pi^+ \pi^-$
849	±77	+18 - 14	1421	2,3 ABLIKIM	10E	BES2	$J/\psi \to \ \kappa^\pm \kappa^0_S \pi^\mp \pi^0$
841	±30	+81 -73	25k	4,5 ABLIKIM	06C	BES2	$J/\psi \rightarrow \overline{K}^*(892)^0 K^+ \pi^-$
658	± 13			⁶ DESCOTES-0	G06	RVUE	$\pi K \rightarrow \pi K$
797	± 19	±43	15k	7,8 AITALA	02	E791	$D^+ \rightarrow K^- \pi^+ \pi^+$

A (10) A (10) A (10)

Lagrangian:

$$\mathcal{L}_{int} = aK_0^{*+}K^{-}\pi^0 + bK_0^{*+}\partial_{\mu}K^{-}\partial^{\mu}\pi^0 + \dots$$
(5)

decay width:

$$\Gamma_{K_0^*}(m) = 3 \frac{\left|\vec{k}_1\right|}{8\pi m^2} \left[a - b \frac{m^2 - M_K^2 - M_\pi^2}{2}\right]^2 e^{-2\left|\vec{k}_1\right|^2/\Lambda^2}$$
(6)

where:

$$\left|\vec{k}_{1}\right| = \frac{\sqrt{m^{4} + \left(M_{K}^{2} - M_{\pi}^{2}\right)^{2} - 2\left(M_{K}^{2} + M_{\pi}^{2}\right)m^{2}}}{2m}\theta\left(m - M_{K} - M_{\pi}\right)$$
(7)

for $m = M_{K_0^*} \simeq 1.43$ GeV we have tree-level decay width $\Gamma_{K_0^*}^{tl} = \Gamma_{K_0^*}(M_{K_0^*}).$

< ロ > < 同 > < 回 > < 回 >

propagator of the scalar kaonic field:

$$\Delta_{K_0^*}(p^2 = m^2) = \frac{1}{m^2 - M_0^2 + \Pi(m^2) + i\varepsilon}$$
(8)

where M_0 is the bare mass of the scalar kaon and $\Pi(m^2) = Re(m^2) + iIm(m^2)$ is the one-loop contribution. Specral function:

$$d_{K_0^*}(m) = \frac{2m}{\pi} |\operatorname{Im} \Delta_{K_0^*}(p^2 = m^2)|$$
(9)

normalization condition:

$$\int_{0}^{\infty} d_{K_{0}^{*}}(m) \mathrm{dm} = 1.$$
 (10)

According to the optical theorem, Im $\Pi(m) = m\Gamma_{K_0^*}(m)$.

Feynman diagram

æ

scalar kaons phase-shift

$$\delta(m) = \frac{1}{2}\arccos\left[1 - \pi\Gamma_{K_0^*}(m)d_{K_0^*}(m)\right] \,. \tag{11}$$

Milena Sołtysiak (UJK)

On the nature of K_0^* (800)

16 February 2016 16 / 21

Is there a $K_0^*(800)$ or not?

scalar kaons spectral function

2

イロト イヨト イヨト イヨト

 $K_0^*(1430)$: 1.412973 - 0.126548i $K_0^*(800)$: 0.745554 - 0.262443i

★ E ► < E</p>

< 17 ▶

- Vector kaon behaves like a Breit-Wigner resonance, for one peak there is one pole.
- $\bullet\,$ Scalar kaon: out of one "seed" state \rightarrow 2 poles appear
 - $K_0^*(1430)$ corresponds to a peak
 - $K_0^*(800)$ "no peak" but there is a pole.
- We determined the position of the poles
 - for vector kaon (0.889543 0.0278042i)
 - for scalar kaons $K_0^*(1430) : 1.412973 0.126548i K_0^*(800) : 0.745554 0.262443i$
- $K^*(892)$ is a quark-antiquark state.
- $K_0^*(1430)$ is predominantly a quark-antiquark state.
- $K_0^*(800)$ is a molecular-like dynamically generated state.

Thank you for your attention

æ