

Lisa Olbrich¹

in collaboration with $Miklós Zétényi^2$, Francesco Giacosa^{1,3} and Dirk H. Rischke¹

¹Institute for Theoretical Physics, Goethe University, Frankfurt am Main, Germany ²Wigner Research Center for Physics, Budapest, Hungary ³Institute of Physics, Jan Kochanowski University, Kielce, Poland

FAIRness, February 16th 2016

Outline

Introduction

- 2 The Model and Its Implications
- 3 Fit and Results
- 4 Conclusions and Outlook

Octet baryons with three flavors

Lisa Olbrich

Lisa Olbrich

Introduction		Conclusions and Outlo
Goal of our work		

describe the three-flavor octet baryons

Introduction
000000000000000000000000000000000000000
Goal of our work

he Model and Its Implication

Fit and Results 00000

Conclusions and Outlook

Our aim is to

describe the three-flavor octet baryons

masses and

he Model and Its Implication

Fit and Results

Conclusions and Outlook

Our aim is to

describe the three-flavor octet baryons

masses and

interactions / decay widths.

Introduction 00000000000 Goal of our work he Model and Its Implication

Fit and Results

Conclusions and Outlook

Our aim is to

describe the three-flavor octet baryons

 $N(\Lambda_{525})$ \longrightarrow N(S70) T

masses and

interactions / decay widths.

Determined by the strong interaction.

The Woder and its i	mplications Fit and Results	Conclusions and Outlook
00000 0000 00 0000000		
Glass of wine		

Introduction	The Model and Its Implications	Fit and Results 00000	Conclusions and Outlook
Glass of wine			
í li			
and the second second	Water atadt	and the second second	and the state of the
may and the	Wennstaut	and the second second	State of the second sec
	Erielibacii a. Hum	and the second s	
and the second		The second second	and the state of
	A CALCER STOR	the second	and the first of the second second
	The second se		
			and the first of the
		All and	Sales and the second
	H 1177	TRANSPECT.	A DECEMBER OF
12		TERF	ALC: NO

Introduction	
Glass of wine	

Fit and Results 00000

Conclusions and Outlook

Can we enjoy the wine also here?

DITE

Introduction 00000000000000 Glass of wine he Model and Its Implication

Fit and Results

Conclusions and Outlook

Will the wine be frozen?

Exact description using Classical Mechanics:

 $\Gamma(\vec{r}_1(t), \vec{r}_2(t), \dots, \vec{p}_1(t), \vec{p}_2(t), \dots)$

Effective description using Thermodynamics:

 $\Gamma(T,\ldots)$

The Model and Its Implication: 0000000 Fit and Results

Conclusions and Outlook

What have we learned?

Effective Models can simplify our everyday lives.

Introduction		Conclusions and Outlook
Description of hadrons		

Quantum Chromodynamics

$$\mathcal{L}_{\mathsf{QCD}} = \bar{q}(x) \left(i \gamma^{\mu} D_{\mu} - m \right) q(x) - \frac{1}{2} \operatorname{Tr}(\mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu})$$

Introduction		Conclusions and Outlook
000000000000		
Description of hadrons		

Quantum Chromodynamics

$$\mathcal{L}_{\mathsf{QCD}} = \bar{q}(x) \big(i \gamma^{\mu} D_{\mu} - m \big) q(x) - \frac{1}{2} \operatorname{Tr}(\mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu})$$

- Only a few parameters,
- but not analytically solvable.

Coupling 'constant' of strong interaction gets arbitrary large at low energies. I.e., at small energies, perturbative expansion of interaction terms in powers of the coupling constant not possible.

Introduction		Conclusions and Outlook
0000000000 0 0		
Description of hadrons		

Extended Linear Sigma Model (meson part)

$$\begin{split} \mathcal{L}_{\text{meson}} &= \text{Tr}\left[(D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi) \right] - m_0^2 \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) - \lambda_1 \left[\text{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 - \lambda_2 \operatorname{Tr} \left[\left(\Phi^{\dagger} \Phi \right)^2 \right] \\ &- \frac{1}{4} \operatorname{Tr} \left(L_{\mu\nu} L^{\mu\nu} + R_{\mu\nu} R^{\mu\nu} \right) + \operatorname{Tr} \left[\left(\frac{m_1^2}{2} + \Delta \right) \left(L_{\mu} L^{\mu} + R_{\mu} R^{\mu} \right) \right] \\ &+ \operatorname{Tr} \left[H \left(\Phi + \Phi^{\dagger} \right) \right] + c_1 \left(\det \Phi - \det \Phi^{\dagger} \right)^2 \\ &+ i \frac{g_2}{2} \left[\operatorname{Tr} \left(L_{\mu\nu} \left[L^{\mu}, L^{\nu} \right] \right) + \operatorname{Tr} \left(R_{\mu\nu} \left[R^{\mu}, R^{\nu} \right] \right) \right] \\ &+ \frac{h_1}{2} \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr} \left(L_{\mu} L^{\mu} + R_{\mu} R^{\mu} \right) + h_2 \operatorname{Tr} \left[\left(L_{\mu} \Phi \right)^{\dagger} \left(L^{\mu} \Phi \right) + \left(\Phi R_{\mu} \right)^{\dagger} \left(\Phi R^{\mu} \right) \right] \\ &+ 2h_3 \operatorname{Tr} \left(\Phi R^{\mu} \Phi^{\dagger} L^{\mu} \right) + g_3 \left[\operatorname{Tr} \left(L_{\mu} L_{\nu} L^{\mu} L^{\nu} \right) + \operatorname{Tr} \left\{ R_{\mu} R_{\nu} R^{\mu} R^{\nu} \right) \right] \\ &+ g_4 \left[\operatorname{Tr} \left(L_{\mu} L^{\mu} L_{\nu} L^{\nu} \right) + \operatorname{Tr} \left(R_{\mu} R^{\mu} R_{\nu} R^{\nu} \right) \right] + g_5 \operatorname{Tr} \left(L_{\mu} L^{\mu} \right) \operatorname{Tr} \left(R_{\nu} R^{\nu} \right) \\ &+ g_6 \left[\operatorname{Tr} \left(L_{\mu} L^{\mu} \right) \operatorname{Tr} \left(L_{\nu} L^{\nu} \right) + \operatorname{Tr} \left(R_{\mu} R^{\mu} \right) \operatorname{Tr} \left(R_{\nu} R^{\nu} \right) \right] \end{split}$$

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011

S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 90 (2014) 11, 114005

ntroduction		Conclusions and Outlook
000000000000000000000000000000000000000		
Description of hadrons		

Extended Linear Sigma Model (meson part)

$$\begin{aligned} \mathcal{L}_{\text{meson}} &= \text{Tr}\left[(D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi) \right] - m_{0}^{2} \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) - \lambda_{1} \left[\text{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^{2} - \lambda_{2} \operatorname{Tr} \left[\left(\Phi^{\dagger} \Phi \right)^{2} \right] \\ &- \frac{1}{4} \operatorname{Tr} \left(L_{\mu\nu} L^{\mu\nu} + R_{\mu\nu} R^{\mu\nu} \right) + \operatorname{Tr} \left[\left(\frac{m_{1}^{2}}{2} + \Delta \right) \left(L_{\mu} L^{\mu} + R_{\mu} R^{\mu} \right) \right] \\ &+ \operatorname{Tr} \left[H \left(\Phi + \Phi^{\dagger} \right) \right] + c_{1} \left(\det \Phi - \det \Phi^{\dagger} \right)^{2} \\ &+ i \frac{g_{2}}{2} \left[\operatorname{Tr} \left(L_{\mu\nu} \left[L^{\mu}, L^{\nu} \right] \right) + \operatorname{Tr} \left(R_{\mu\nu} \left[R^{\mu}, R^{\nu} \right] \right) \right] \\ &+ \frac{h_{1}}{2} \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr} \left(L_{\mu} L^{\mu} + R_{\mu} R^{\mu} \right) + h_{2} \operatorname{Tr} \left[\left(L_{\mu} \Phi \right)^{\dagger} \left(L^{\mu} \Phi \right) + \left(\Phi R_{\mu} \right)^{\dagger} \left(\Phi R^{\mu} \right) \right] \\ &+ 2h_{3} \operatorname{Tr} \left(\Phi R^{\mu} \Phi^{\dagger} L^{\mu} \right) + g_{3} \left[\operatorname{Tr} \left(L_{\mu} L_{\nu} L^{\mu} L^{\nu} \right) + \operatorname{Tr} \left\{ R_{\mu} R_{\nu} R^{\mu} R^{\nu} \right) \right] \\ &+ g_{4} \left[\operatorname{Tr} \left(L_{\mu} L^{\mu} L_{\nu} L^{\nu} \right) + \operatorname{Tr} \left(R_{\mu} R^{\mu} R_{\nu} R^{\nu} \right) \right] + g_{5} \operatorname{Tr} \left(L_{\mu} L^{\mu} \right) \operatorname{Tr} \left(R_{\nu} R^{\nu} \right) \\ &+ g_{6} \left[\operatorname{Tr} \left(L_{\mu} L^{\mu} \right) \operatorname{Tr} \left(L_{\nu} L^{\nu} \right) + \operatorname{Tr} \left(R_{\mu} R^{\mu} \right) \operatorname{Tr} \left(R_{\nu} R^{\nu} \right) \right] \end{aligned}$$

- A lot more parameters,
- but solvable using perturbation theory.
- Good results already at tree level.

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011

S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 90 (2014) 11, 114005

The Model and Its Implications	Conclusions and Outlook

Outline

2 The Model and Its Implications

3 Fit and Results

4 Conclusions and Outlook

Baryon Fields for $N_f = 3$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

Baryonic fields as quark-diquark states

The Model and Its Implications

Fit and Results

Conclusions and Outlook

Baryon Fields for $N_f = 3$

$\overline{J^P} = \frac{1}{2}^+$ baryon octet in the $N_f = 3$ case:

$$\underbrace{\begin{pmatrix} [d,s]\\ -[u,s]\\ [u,d] \end{pmatrix}}_{\text{quark}} \underbrace{(u,d,s)}_{\text{quark}} = \begin{pmatrix} uds & uus & uud \\ dds & uds & udd \\ dss & uss & uds \end{pmatrix}$$

diquark

$$\sim \left(\begin{array}{ccc} \frac{\Lambda}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} & \Sigma^+ & p\\ \Sigma^- & \frac{\Lambda}{\sqrt{6}} - \frac{\Sigma^0}{\sqrt{2}} & n\\ \Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{array}\right)$$

Baryon Fields for $N_f = 3$

The Model and Its Implications

Fit and Results 00000 Conclusions and Outlook

Chiral Transformation – Mirror Assignment

• Two matrices $N_{\rm 1}$ and $N_{\rm 2},$ which behave under chiral transformations as

$$N_{1R} \to U_R N_{1R} U_R^{\dagger} , \qquad N_{1L} \to U_L N_{1L} U_R^{\dagger} ,$$
$$N_{2R} \to U_R N_{2R} U_L^{\dagger} , \qquad N_{2L} \to U_L N_{2L} U_L^{\dagger} .$$

• And two matrices M_1 and M_2 whose chiral transformation from the left is 'mirror-like':

 $M_{1R} \to U_L M_{1R} U_R^{\dagger} , \qquad M_{1L} \to U_R M_{1L} U_R^{\dagger}$ $M_{2R} \to U_L M_{2R} U_L^{\dagger} , \qquad M_{2L} \to U_R M_{2L} U_L^{\dagger}$

Baryon Fields for $N_f = 3$

The Model and Its Implications

Fit and Results 00000 Conclusions and Outlook

Chiral Transformation – Mirror Assignment

• Two matrices $N_{\rm 1}$ and $N_{\rm 2},$ which behave under chiral transformations as

$$N_{1R} \to U_R N_{1R} U_R^{\dagger} , \qquad N_{1L} \to U_L N_{1L} U_R^{\dagger} ,$$
$$N_{2R} \to U_R N_{2R} U_L^{\dagger} , \qquad N_{2L} \to U_L N_{2L} U_L^{\dagger} .$$

• And two matrices M_1 and M_2 whose chiral transformation from the left is 'mirror-like':

$$M_{1R} \to U_L M_{1R} U_R^{\dagger} , \qquad M_{1L} \to U_R M_{1L} U_R^{\dagger}$$
$$M_{2R} \to U_L M_{2R} U_L^{\dagger} , \qquad M_{2L} \to U_R M_{2L} U_L^{\dagger} .$$

Lisa Olbrich

Three-Flavor Chiral Effective Model with Four Baryonic Multiplets within the Mirror Assignment

Baryon Fields for $N_f = 3$

The Model and Its Implications

Fit and Results 00000 Conclusions and Outlook

Baryon Fields for $N_f = 3$ - Parity Eigenstates

Baryonic fields with definite parity are given by

$$B_N = \frac{N_1 - N_2}{\sqrt{2}}, \qquad B_{N\star} = \frac{N_1 + N_2}{\sqrt{2}},$$
$$B_M = \frac{M_1 - M_2}{\sqrt{2}}, \qquad B_{M\star} = \frac{M_1 + M_2}{\sqrt{2}},$$

where now B_N and B_M have positive parity and B_{N*} and B_{M*} have negative parity.

Baryon Fields for $N_f = 3$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

Assignment to physical particles/resonances

In the limit of zero mixing the fields can be assigned to particles as follows

$$B_N \text{ to } \{N(939), \Lambda(1116), \Sigma(1193), \Xi(1338)\}, \\ B_M \text{ to } \{N(1440), \Lambda(1600), \Sigma(1660), \Xi(1690)\}, \\ B_{N*} \text{ to } \{N(1535), \Lambda(1670), \Sigma(1620), \Xi(?)\} \\ B_{M*} \text{ to } \{N(1650), \Lambda(1800), \Sigma(1750), \Xi(?)\}.$$

The detailed study of the mixing is performed for the two-flavor case.

Baryon Fields for $N_f = 3$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

Assignment to physical particles/resonances

In the limit of zero mixing the fields can be assigned to particles as follows

The detailed study of the mixing is performed for the two-flavor case.

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{1R} + \bar{N}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa'_{1} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{2R} \Phi + \bar{N}_{2R} \Phi^{\dagger} N_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa'_{2} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ N_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1R} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa_{1}' \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{2R} \Phi + \bar{N}_{2R} \Phi^{\dagger} N_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa_{2}' \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ M_{1R} \Phi^{\dagger} \right\} \right) \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1R} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa_{1}' \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{2R} \Phi + \bar{N}_{2R} \Phi^{\dagger} N_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa_{2}' \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ M_{1R} \Phi^{\dagger} \right\} \right) \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{1R} + \bar{N}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa'_{1} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa'_{2} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ N_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1R} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{1R} + \bar{N}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa'_{1} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{2R} \Phi + \bar{N}_{2R} \Phi^{\dagger} N_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa'_{2} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ N_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{1R} + \bar{N}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa'_{1} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{2R} \Phi + \bar{N}_{2R} \Phi^{\dagger} N_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa'_{2} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ N_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1R} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 3$

The Lagrangian $(N_f = 3)$

$$\begin{split} \mathcal{L}_{N_{f}=3} &= \mathrm{Tr} \left\{ \bar{N}_{1L} i \gamma_{\mu} D_{2L}^{\mu} N_{1L} + \bar{N}_{1R} i \gamma_{\mu} D_{1R}^{\mu} N_{1R} + \bar{N}_{2L} i \gamma_{\mu} D_{1L}^{\mu} N_{2L} + \bar{N}_{2R} i \gamma_{\mu} D_{2R}^{\mu} N_{2R} \right\} \\ &+ \mathrm{Tr} \left\{ \bar{M}_{1L} i \gamma_{\mu} D_{4R}^{\mu} M_{1L} + \bar{M}_{1R} i \gamma_{\mu} D_{3L}^{\mu} M_{1R} + \bar{M}_{2L} i \gamma_{\mu} D_{3R}^{\mu} M_{2L} + \bar{M}_{2R} i \gamma_{\mu} D_{4L}^{\mu} M_{2R} \right\} \\ &- g_{N} \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{1R} + \bar{N}_{1R} \Phi^{\dagger} N_{1L} + \bar{N}_{2L} \Phi N_{2R} + \bar{N}_{2R} \Phi^{\dagger} N_{2L} \right\} \\ &- g_{M} \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{1R} + \bar{M}_{1R} \Phi M_{1L} + \bar{M}_{2L} \Phi^{\dagger} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,1} \operatorname{Tr} \left\{ \bar{N}_{1L} M_{1R} + \bar{M}_{1R} N_{1L} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} \Phi M_{2L} \right\} \\ &- m_{0,2} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1L} N_{1R} + \bar{N}_{2L} M_{2R} + \bar{M}_{2R} N_{2L} \right\} \\ &- \kappa_{1} \operatorname{Tr} \left\{ \bar{N}_{1R} \Phi^{\dagger} N_{2L} \Phi + \bar{N}_{2L} \Phi N_{1R} \Phi^{\dagger} \right\} - \kappa_{1}' \operatorname{Tr} \left\{ \bar{N}_{1L} \Phi N_{2R} \Phi + \bar{N}_{2R} \Phi^{\dagger} N_{1L} \Phi^{\dagger} \right\} \\ &- \kappa_{2} \operatorname{Tr} \left\{ \bar{M}_{1R} \Phi M_{2L} \Phi + \bar{M}_{2L} \Phi^{\dagger} M_{1R} \Phi^{\dagger} \right\} - \kappa_{2}' \operatorname{Tr} \left\{ \bar{M}_{1L} \Phi^{\dagger} M_{2R} \Phi + \bar{M}_{2R} \Phi M_{1L} \Phi^{\dagger} \right\} \\ &- \epsilon_{1} \left(\operatorname{Tr} \left\{ \bar{N}_{1L} \Phi \right\} \operatorname{Tr} \left\{ N_{2R} \Phi \right\} + \operatorname{Tr} \left\{ \bar{N}_{2R} \Phi^{\dagger} \right\} \operatorname{Tr} \left\{ N_{1L} \Phi^{\dagger} \right\} \right) \\ &- \epsilon_{3} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1L} + \bar{N}_{2R} M_{2L} + \bar{M}_{2L} N_{2R} \right\} \\ &- \epsilon_{4} \operatorname{Tr} \left\{ \Phi^{\dagger} \Phi \right\} \operatorname{Tr} \left\{ \bar{N}_{1R} M_{1L} + \bar{M}_{1R} N_{1R} + \bar{N}_{2R} M_{2L} + \bar{M}_{2R} N_{2L} \right\} \end{split}$$

ntroduction The Model and Its Implications

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 2$ - Simplifying the Problem

The Lagrangian $(N_f = 2)$

$$\begin{split} \mathcal{L} &= \quad \bar{\Psi}_{NR} i \gamma_{\mu} \mathcal{D}_{NR}^{\mu} \Psi_{NR} + \bar{\Psi}_{NL} i \gamma_{\mu} \mathcal{D}_{ML}^{\mu} \Psi_{NL} + \bar{\Psi}_{N*R} i \gamma_{\mu} \mathcal{D}_{NR}^{\mu} \Psi_{N*R} + \bar{\Psi}_{N*L} i \gamma_{\mu} \mathcal{D}_{MR}^{\mu} \Psi_{N*L} \\ &+ \bar{\Psi}_{MR} i \gamma_{\mu} \mathcal{D}_{ML}^{\mu} \Psi_{MR} + \bar{\Psi}_{ML} i \gamma_{\mu} \mathcal{D}_{MR}^{\mu} \Psi_{ML} + \bar{\Psi}_{M*R} i \gamma_{\mu} \mathcal{D}_{ML}^{\mu} \Psi_{M*R} + \bar{\Psi}_{M*L} i \gamma_{\mu} \mathcal{D}_{MR}^{\mu} \Psi_{M*L} \\ &+ c_{A_N} \left(\bar{\Psi}_{NR} i \gamma_{\mu} R^{\mu} \Psi_{N*R} + \bar{\Psi}_{N*R} i \gamma_{\mu} R^{\mu} \Psi_{NR} - \bar{\Psi}_{NL} i \gamma_{\mu} L^{\mu} \Psi_{N*L} - \bar{\Psi}_{N*L} i \gamma_{\mu} L^{\mu} \Psi_{NL} \right) \\ &+ c_{A_M} \left(\bar{\Psi}_{MR} i \gamma_{\mu} L^{\mu} \Psi_{M*R} + \bar{\Psi}_{M*R} i \gamma_{\mu} L^{\mu} \Psi_{MR} - \bar{\Psi}_{ML} i \gamma_{\mu} R^{\mu} \Psi_{M*L} - \bar{\Psi}_{M*L} i \gamma_{\mu} R^{\mu} \Psi_{ML} \right) \\ &- g_N \left(\bar{\Psi}_{NL} \Phi \Psi_{NR} + \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{NL} + \bar{\Psi}_{N*L} \Phi \Psi_{N*R} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} \right) \\ &- g_M \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{MR} \Phi \Psi_{ML} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} \right) \\ &- g_M \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{NR} \Psi_{ML} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} + \bar{\Psi}_{N*R} \Psi_{N*L} \right) \\ &- \frac{m_{0,1} + m_{0,2}}{2} \left(\bar{\Psi}_{NL} \Psi_{MR} + \bar{\Psi}_{NR} \Psi_{ML} + \bar{\Psi}_{N*L} \Psi_{N*R} + \bar{\Psi}_{N*R} \Psi_{N*L} \right) \\ &- \frac{m_{0,1} - m_{0,2}}{2} \left(\bar{\Psi}_{NL} \Psi_{MR} - \bar{\Psi}_{NR} \Psi_{ML} + \bar{\Psi}_{N*L} \Psi_{N*R} + \bar{\Psi}_{N*R} \Psi_{N*L} \right) \\ &- \frac{m_{0,1} - m_{0,2}}{2} \left(\bar{\Psi}_{NL} \Phi_{NR} - \bar{\Psi}_{NR} \Phi_{ML} + \bar{\Psi}_{N*R} \Phi_{N*R} + \bar{\Psi}_{N*R} \Psi_{N*L} \right) \\ &- \frac{\kappa_{1}' + \kappa_{1}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(- \bar{\Psi}_{NL} \Phi_{NR} - \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{NL} + \bar{\Psi}_{N*L} \Phi_{N*R} + \bar{\Psi}_{N*R} \Phi^{\dagger} \Psi_{NL} \right) \\ &- \frac{\kappa_{1}' - \kappa_{1}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(\bar{\Psi}_{NL} \Phi^{\dagger} \Psi_{NR} - \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{NL} - \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{NR} + \bar{\Psi}_{N*R} \Phi^{\dagger} \Psi_{NL} \right) \\ &- \frac{\kappa_{2}' + \kappa_{2}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} - \bar{\Psi}_{MR} \Phi_{ML} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{M*R} \Phi \Psi_{M*L} \right) \\ &- \frac{\kappa_{2}' - \kappa_{2}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} - \bar{\Psi}_{MR} \Phi_{ML} + \bar{\Psi}_{M*L} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{M*R} \Phi \Psi_{ML} \right) \\ \end{array}$$

ntroduction The Model and

The Model and Its Implications $\circ\circ\circ\circ\circ\circ\circ\bullet$

Fit and Results

Conclusions and Outlook

The Lagrangian for $N_f = 2$ - Simplifying the Problem

The Lagrangian $(N_f = 2)$

$$\begin{split} \mathcal{L} &= \quad \bar{\Psi}_{NR} i \gamma_{\mu} \mathcal{D}_{NR}^{\mu} \Psi_{NR} + \bar{\Psi}_{NL} i \gamma_{\mu} \mathcal{D}_{NL}^{\mu} \Psi_{NL} + \bar{\Psi}_{N*R} i \gamma_{\mu} \mathcal{D}_{NR}^{\mu} \Psi_{N*R} + \bar{\Psi}_{N*L} i \gamma_{\mu} \mathcal{D}_{ML}^{\mu} \Psi_{N*L} \\ &+ \bar{\Psi}_{MR} i \gamma_{\mu} \mathcal{D}_{ML}^{\mu} \Psi_{MR} + \bar{\Psi}_{ML} i \gamma_{\mu} \mathcal{D}_{MR}^{\mu} \Psi_{ML} + \bar{\Psi}_{N*R} i \gamma_{\mu} \mathcal{D}_{ML}^{\mu} \Psi_{N*R} + \bar{\Psi}_{N*L} i \gamma_{\mu} \mathcal{D}_{MR}^{\mu} \Psi_{N*L} \\ &+ c_{A_{N}} \left(\bar{\Psi}_{NR} i \gamma_{\mu} R^{\mu} \Psi_{N*R} + \bar{\Psi}_{N*R} i \gamma_{\mu} R^{\mu} \Psi_{NR} - \bar{\Psi}_{NL} i \gamma_{\mu} L^{\mu} \Psi_{N*L} - \bar{\Psi}_{N*L} i \gamma_{\mu} L^{\mu} \Psi_{NL} \right) \\ &+ c_{A_{M}} \left(\bar{\Psi}_{MR} i \gamma_{\mu} L^{\mu} \Psi_{M*R} + \bar{\Psi}_{N*R} i \gamma_{\mu} L^{\mu} \Psi_{MR} - \bar{\Psi}_{ML} i \gamma_{\mu} R^{\mu} \Psi_{M*L} - \bar{\Psi}_{M*L} i \gamma_{\mu} R^{\mu} \Psi_{ML} \right) \\ &- g_{N} \left(\bar{\Psi}_{NL} \Phi^{\mu} \Psi_{M*R} + \bar{\Psi}_{N*R} \Phi^{\dagger} \Psi_{NL} + \bar{\Psi}_{N*L} \Phi^{\mu} \Psi_{N*L} \Phi^{\dagger} \Psi_{N*R} \right) \\ &- g_{M} \left(\bar{\Psi}_{NL} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{ML} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} \Phi^{\dagger} \Psi_{N*R} \right) \\ &- g_{M} \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{NR} \Phi^{\Psi} \Psi_{ML} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} \right) \\ &- \frac{m_{0,1} + m_{0,2}}{2} \left(\bar{\Psi}_{NL} \Psi_{MR} + \bar{\Psi}_{NR} \Psi_{ML} + \bar{\Psi}_{N*L} \Psi_{N*R} + \bar{\Psi}_{N*R} \Psi_{N*L} \right) \\ &- \frac{m_{0,1} - m_{0,2}}{2} \left(\bar{\Psi}_{NL} \Psi_{M*R} - \bar{\Psi}_{NR} \Psi_{ML} + \bar{\Psi}_{N*L} \Psi_{N*R} + \bar{\Psi}_{M*R} \Psi_{N*L} \right) \\ &- \frac{m_{0,1} - m_{0,2}}{2} \left(\bar{\Psi}_{NL} \Phi_{NR} - \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{NL} + \bar{\Psi}_{N*L} \Phi_{NR} - \bar{\Psi}_{N*R} \Psi_{NL} \right) \\ &- \frac{\kappa'_{1} + \kappa_{1}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(- \bar{\Psi}_{NL} \Phi_{NR} - \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{NL} + \bar{\Psi}_{N*L} \Phi_{N*R} + \bar{\Psi}_{N*R} \Phi^{\dagger} \Psi_{NL} \right) \\ &- \frac{\kappa'_{1} + \kappa_{1}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(- \bar{\Psi}_{NL} \Phi^{\dagger} \Psi_{NR} - \bar{\Psi}_{NR} \Phi^{\dagger} \Psi_{NL} - \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{N*R} \Phi^{\dagger} \Psi_{NL} \right) \\ &- \frac{\kappa'_{2} + \kappa_{2}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} - \bar{\Psi}_{MR} \Phi_{ML} + \bar{\Psi}_{N*L} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{M*R} \Phi\Psi_{M*L} \right) \\ &- \frac{\kappa'_{2} - \kappa_{2}}{2} \frac{\varphi_{S}}{\sqrt{2}} \left(\bar{\Psi}_{ML} \Phi^{\dagger} \Psi_{MR} - \bar{\Psi}_{MR} \Phi\Psi_{ML} + \bar{\Psi}_{M*L} \Phi^{\dagger} \Psi_{MR} + \bar{\Psi}_{M*R} \Phi\Psi_{ML} \right) \\ \end{array}$$

he Model and Its Implications

Fit and Results

Conclusions and Outlook

Outline

- 2 The Model and Its Implications
- 3 Fit and Results
- 4 Conclusions and Outlook

Parameters

Fit and Results

Conclusions and Outlook

Fit Result of the Free Parameters

Using a standard χ^2 procedure we find that three acceptable and almost equally deep minima exist.

	minimum 1		minin	minimum 2		minimum 3	
$m_{0,1}$ [GeV]	0.1393	\pm 0.0026	0.14	\pm 0.11	-1.078	\pm 0.017	
$m_{0,2}$ [GeV]	-0.2069	\pm 0.0027	-0.18	\pm 0.12	0.894	\pm 0.019	
c_N	-2.071	\pm 0.023	-2.83	\pm 0.39	-33.6	\pm 2.2	
c_M	12.4	\pm 1.3	11.7	\pm 1.8	-19.1	\pm 3.1	
c_{A_N}	-1.00	\pm 0.23	0.03	\pm 0.40	-2.68	\pm 0.80	
c_{A_M}	-51.0	\pm 2.8	80	\pm 41	-71.7	\pm 6.5	
g_N	15.485	\pm 0.012	15.24	\pm 0.36	10.58	\pm 0.24	
g_M	17.96	\pm 0.17	18.26	\pm 0.52	13.07	\pm 0.33	
$\kappa_1 \; [\text{GeV}^{-1}]$	37.80	\pm 0.26	59.9	\pm 8.5	32.4	\pm 4.2	
κ'_1 [GeV ⁻¹]	57.12	\pm 0.29	29.8	\pm 6.6	55.2	\pm 4.0	
κ_2 [GeV ⁻¹]	-20.7	\pm 2.5	32	\pm 13	-20	\pm 13	
$\kappa_2' \; [{\rm GeV}^{-1}]$	41.5	\pm 3.2	-8	\pm 13	48.9	\pm 4.5	
χ^2	10.3		10.7		10.3		

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

Masses

he Model and Its Implication

Fit and Results

Conclusions and Outlook

Comparison of predictions of the model to experimental and lattice results – masses

	minimum 1		mini	minimum 2		minimum 3	
$m_N [{\rm GeV}]$	0.9389	\pm 0.0010	0.9389	\pm 0.0010	0.9389	\pm 0.0010	
$m_{N(1440)} [{\rm GeV}]$	1.430	\pm 0.071	1.432	\pm 0.073	1.429	\pm 0.074	
$m_{N(1535)}$ [GeV]	1.561	\pm 0.065	1.585	\pm 0.069	1.559	\pm 0.069	
$m_{N(1650)}$ [GeV]	1.658	\pm 0.076	1.619	\pm 0.071	1.663	\pm 0.081	

	experiment [PDG]		
m_N [GeV] $m_{N(1440)}$ [GeV]	0.9389	± 0.001 ± 0.07	
$m_{N(1535)} [\text{Gev}]$	1.53	± 0.08	
$m_{N(1650)} [\text{GeV}]$	1.65	\pm 0.08	

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

Introduction 000000000000 Decav Widths he Model and Its Implication

Fit and Results

Conclusions and Outlook

Comparison of predictions of the model to experimental and lattice results – decay widths

	minimum 1		mini	mum 2	minimum 3	
$\Gamma_{N(1440) \rightarrow N\pi}$ [GeV]	0.195	\pm 0.087	0.195	\pm 0.088	0.196	\pm 0.087
$\Gamma_{N(1535) \rightarrow N\pi}$ [GeV]	0.072	\pm 0.019	0.073	\pm 0.019	0.072	\pm 0.019
$\Gamma_{N(1535) \rightarrow N\eta}$ [GeV]	0.0055	\pm 0.0025	0.0062	\pm 0.0024	0.0055	\pm 0.0027
$\Gamma_{N(1650) \rightarrow N\pi}$ [GeV]	0.112	\pm 0.033	0.114	\pm 0.033	0.112	\pm 0.033
$\Gamma_{N(1650) \rightarrow N\eta}$ [GeV]	0.0117	\pm 0.0038	0.0109	\pm 0.0038	0.0119	\pm 0.0038

	experiment [PDG]		
$\Gamma_{N(1440) \rightarrow N\pi}$ [GeV]	0.195	\pm 0.087	
$\Gamma_{N(1535) \rightarrow N\pi}$ [GeV]	0.068	\pm 0.019	
$\Gamma_{N(1535) \rightarrow N\eta}$ [GeV]	0.063	\pm 0.018	
$\Gamma_{N(1650) \rightarrow N\pi}$ [GeV]	0.105	\pm 0.037	
$\Gamma_{N(1650) \rightarrow N\eta}$ [GeV]	0.015	\pm 0.008	

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

Introduction 000000000000 Decav Widths he Model and Its Implication

Fit and Results

Conclusions and Outlook

Comparison of predictions of the model to experimental and lattice results – decay widths

	minimum 1		minimum 2		minimum 3	
$\Gamma_{N(1440) \rightarrow N\pi}$ [GeV]	0.195	\pm 0.087	0.195	\pm 0.088	0.196	\pm 0.087
$\Gamma_{N(1535) \rightarrow N\pi}$ [GeV]	0.072	\pm 0.019	0.073	\pm 0.019	0.072	\pm 0.019
$\Gamma_{N(1535) \rightarrow N\eta}$ [GeV]	0.0055	\pm 0.0025	0.0062	\pm 0.0024	0.0055	\pm 0.0027
$\Gamma_{N(1650) \rightarrow N\pi}$ [GeV]	0.112	\pm 0.033	0.114	\pm 0.033	0.112	\pm 0.033
$\Gamma_{N(1650) \rightarrow N\eta}$ [GeV]	0.0117	\pm 0.0038	0.0109	\pm 0.0038	0.0119	\pm 0.0038

	experiment [PDG]		
$\Gamma_{N(1440) \rightarrow N\pi}$ [GeV]	0.195	\pm 0.087	
$\Gamma_{N(1535) \rightarrow N\pi}$ [GeV]	0.068	\pm 0.019	
$\Gamma_{N(1535) \rightarrow N\eta}$ [GeV]	0.063	\pm 0.018	
$\Gamma_{N(1650) \rightarrow N\pi}$ [GeV]	0.105	\pm 0.037	
$\Gamma_{N(1650) \rightarrow N\eta}$ [GeV]	0.015	\pm 0.008	

compare S. Gallas, F. Giacosa and D. H. Rischke, Phys. Rev. D 82 (2010) 014004 [arXiv:0907.5084 [hep-ph]].

Axial coupling constants

constants

The Model and Its Implication

Fit and Results ○○○●○ Conclusions and Outlook

Comparison of predictions of the model to experimental and lattice results – axial coupling

	minimum 1		mini	mum 2	minimum 3	
g^N_A	1.2670	± 0.0025	1.2670	\pm 0.0025	1.2670	± 0.0025
$g_{A}^{N(1440)}$	1.20	\pm 0.20	1.19	\pm 0.20	1.21	\pm 0.21
$g_A^{\hat{N}(1535)}$	0.20	\pm 0.30	0.21	\pm 0.30	0.20	\pm 0.31
$g_A^{ar{N}(1650)}$	0.55	\pm 0.20	0.55	\pm 0.20	0.55	\pm 0.20

	experiment/lattice			
$g^N_A_{N(1440)}$	1.267	± 0.003		
$g_A^{(1440)}$	1.2	\pm 0.2		
$g_{A}^{N(1535)}$	0.2	\pm 0.3		
$g_A^{N(1650)}$	0.55	\pm 0.2		

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

he Model and Its Implication

Fit and Results

Conclusions and Outlook

Chiral partner

Chiral Partner of the Nucleon

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

he Model and Its Implication

Fit and Results

Conclusions and Outlook

Chiral partner

Chiral Partner of the Nucleon

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

he Model and Its Implication

Fit and Results

Conclusions and Outlook

Chiral partner

Chiral Partner of the Nucleon

L. Olbrich, M. Zétényi, F. Giacosa, and D. H. Rischke Phys. Rev. D 93, 034021 (2016)

Introduction 00000000000 Chiral partner The Model and Its Implication

Fit and Results

Conclusions and Outlook

Chiral Partner of the Nucleon

Chiral partners are (for all three minima)

N(939) and $N(1535)\mbox{,}$

and

N(1440) and N(1650).

he Model and Its Implication

Fit and Results 00000

Conclusions and Outlook $_{\odot \odot \odot \odot}$

Outline

- 2 The Model and Its Implications
- **3** Fit and Results
- **4** Conclusions and Outlook

The Model and Its Implication

Fit and Results 00000

Conclusions and Outlook

Conclusions

- Generalization of eLSM to the three-flavor case, thus including baryons with strangeness.
- Using a quark-diquark model and requiring chirally invariant mass terms naturally leads to the consideration of four baryonic multiplets.
- Reduction to $N_f = 2$ and fit.
- Three existing minima yield good results except for the $N(1535) \to N\eta$ decay width.
- The pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.

The Model and Its Implication

Fit and Results

Conclusions and Outlook

Conclusions

- Generalization of eLSM to the three-flavor case, thus including baryons with strangeness.
- Using a quark-diquark model and requiring chirally invariant mass terms naturally leads to the consideration of four baryonic multiplets.
- Reduction to $N_f = 2$ and fit.
- Three existing minima yield good results except for the $N(1535) \to N\eta$ decay width.
- The pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.

		Conclusions and Outlook
		0000
Conclusions		

- Generalization of eLSM to the three-flavor case, thus including baryons with strangeness.
- Using a quark-diquark model and requiring chirally invariant mass terms naturally leads to the consideration of four baryonic multiplets.
- Reduction to $N_f = 2$ and fit.
- Three existing minima yield good results except for the $N(1535) \to N\eta$ decay width.
- The pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.

		Conclusions and Outlook ●○○○
Conclusions		

- Generalization of eLSM to the three-flavor case, thus including baryons with strangeness.
- Using a quark-diquark model and requiring chirally invariant mass terms naturally leads to the consideration of four baryonic multiplets.
- Reduction to $N_f = 2$ and fit.
- Three existing minima yield good results except for the $N(1535) \to N\eta$ decay width.
- The pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.

		Conclusions and Outlook
		0000
Conclusions		

- Generalization of eLSM to the three-flavor case, thus including baryons with strangeness.
- Using a quark-diquark model and requiring chirally invariant mass terms naturally leads to the consideration of four baryonic multiplets.
- Reduction to $N_f = 2$ and fit.
- Three existing minima yield good results except for the $N(1535) \to N\eta$ decay width.
- The pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.

		Conclusions and Outlook
		0000
Conclusions		

- Generalization of eLSM to the three-flavor case, thus including baryons with strangeness.
- Using a quark-diquark model and requiring chirally invariant mass terms naturally leads to the consideration of four baryonic multiplets.
- Reduction to $N_f = 2$ and fit.
- Three existing minima yield good results except for the $N(1535) \to N\eta$ decay width.
- The pairs N(939), N(1535) and N(1440), N(1650) form chiral partners.

Fit and Results

Conclusions and Outlook

The issue with the $N(1535) \rightarrow N\eta$ decay width

The decay width of $N(1535) \rightarrow N\eta$

- Our theoretical values are too small compared to the experimental value.
- This result is stable under parameter variations.
- Further studies are needed to understand the resonance N(1535).
- Some authors say that N(1535) may contain a sizable amount of ss.
 C. S. An and B. S. Zou, Sci. Sin. G 52 (2009) 1452 [arXiv:0910.4452 [nucl-th]].
 R. G. Liu and R. S. Zou, Shu, Shu and the state of 040002 (2009) [nucl-th]].

B. C. Liu and B. S. Zou, Phys. Rev. Lett. 90, 042002 (2006) [nucl-th/0503069]. X. Coo, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C 80 (2000) 025203 [arXiv:0005.0260

 Another possibility is the investigation of the role of chiral anomaly in the baryonic sector.
 W. I. Eshraim, S. Janowski, A. Peters, K. Neuschwander and F. Giacosa, Acta Phys. Polon. Supp. 5 (2012) 1101 [arXiv:1209.3976 [hep-ph]];
 W. I. Eshraim, S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 5, 054036 [arXiv:1208.6474 [hep-ph]].

Fit and Results

Conclusions and Outlook

The issue with the $N(1535) \rightarrow N\eta$ decay width

The decay width of $N(1535) \rightarrow N\eta$

- Our theoretical values are too small compared to the experimental value.
- This result is stable under parameter variations.
- Further studies are needed to understand the resonance N(1535).
- Some authors say that N(1535) may contain a sizable amount of $s\bar{s}$. C. S. An and B. S. Zou, Sci. Sin. G 52 (2009) 1452 [arXiv:0910.4452 [nucl-th]]. B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006) [nucl-th/0503069].
 - X. Cao, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C 80 (2009) 025203 [arXiv:0905.0260 [nucl-th]].
- Another possibility is the investigation of the role of chiral anomaly in the baryonic sector.
 W. I. Eshraim, S. Janowski, A. Peters, K. Neuschwander and F. Giacosa, Acta Phys. Polon. Supp. 5 (2012) 1101 [arXiv:1209.3976 [hep-ph]];
 W. I. Eshraim, S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 5, 054036 [arXiv:1208.6474 [hep-ph]].

Conclusions and Outlook

The issue with the $N(1535) \rightarrow N\eta$ decay width

The decay width of $N(1535) \rightarrow N\eta$

- Our theoretical values are too small compared to the experimental value.
- This result is stable under parameter variations.
- Further studies are needed to understand the resonance N(1535).
- Some authors say that N(1535) may contain a sizable amount of $s\bar{s}$. C. S. An and B. S. Zou, Sci. Sin. G 52 (2009) 1452 [arXiv:0910.4452 [nucl-th]]. B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006) [nucl-th/0503069].
 - X. Cao, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C 80 (2009) 025203 [arXiv:0905.0260 [nucl-th]].
- Another possibility is the investigation of the role of chiral anomaly in the baryonic sector.
 W. I. Eshraim, S. Janowski, A. Peters, K. Neuschwander and F. Giacosa, Acta Phys. Polon. Supp. 5 (2012) 1101 [arXiv:1209.3976 [hep-ph]];
 W. I. Eshraim, S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 5, 054036 [arXiv:1208.6474 [hep-ph]].

Conclusions and Outlook

The issue with the $N(1535) \rightarrow N\eta$ decay width

The decay width of $N(1535) \rightarrow N\eta$

- Our theoretical values are too small compared to the experimental value.
- This result is stable under parameter variations.
- Further studies are needed to understand the resonance N(1535).
- Some authors say that N(1535) may contain a sizable amount of $s\bar{s}$.
 - B. C. Liu and B. S. Zou, Phys. Rev. Lett. **96**, 042002 (2006) [nucl-th/0503069].
 - X. Cao, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C 80 (2009) 025203 [arXiv:0905.0260 [nucl-th]].
- Another possibility is the investigation of the role of chiral anomaly in the baryonic sector.
 W. I. Eshraim, S. Janowski, A. Peters, K. Neuschwander and F. Giacosa, Acta Phys. Polon. Supp. 5 (2012) 1101 [arXiv:1209.3976 [hep-ph]];
 W. I. Eshraim, S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 5, 054036 [arXiv:1208.6474 [hep-ph]].

Conclusions and Outlook

The issue with the $N(1535) \rightarrow N\eta$ decay width

The decay width of $N(1535) \rightarrow N\eta$

- Our theoretical values are too small compared to the experimental value.
- This result is stable under parameter variations.
- Further studies are needed to understand the resonance N(1535).
- Some authors say that N(1535) may contain a sizable amount of $s\bar{s}$.

C. S. An and B. S. Zou, Sci. Sin. G 52 (2009) 1452 [arXiv:0910.4452 [nucl-th]].

B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006) [nucl-th/0503069].

X. Cao, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C 80 (2009) 025203 [arXiv:0905.0260 [nucl-th]].

Another possibility is the investigation of the role of chiral anomaly in the baryonic sector.
 W. I. Eshraim, S. Janowski, A. Peters, K. Neuschwander and F. Giacosa, Acta Phys. Polon. Supp. 5 (2012) 1101 [arXiv:1209.3976 [hep-ph]];
 W. I. Eshraim, S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 5, 054036 [arXiv:1208.6474 [hep-ph]].

Conclusions and Outlook $\circ \bullet \circ \circ$

The issue with the $N(1535) \rightarrow N\eta$ decay width

The decay width of $N(1535) \rightarrow N\eta$

- Our theoretical values are too small compared to the experimental value.
- This result is stable under parameter variations.
- Further studies are needed to understand the resonance N(1535).
- Some authors say that N(1535) may contain a sizable amount of $s\bar{s}$. C. S. An and B. S. Zou, Sci. Sin. G 52 (2009) 1452 [arXiv:0910.4452 [nucl-th]].

C. S. An and B. S. Zou, Sci. Sin. G **52** (2009) 1452 [arXiV:0910.4452 [nucl-th]].
B. C. Liu and B. S. Zou, Phys. Rev. Lett. **96**, 042002 (2006) [nucl-th/0503069].
X. Cao, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C **80** (2009) 025203 [arXiv:0905.0260 [nucl-th]].

Another possibility is the investigation of the role of chiral anomaly in the baryonic sector.
 W. I. Eshraim, S. Janowski, A. Peters, K. Neuschwander and F. Giacosa, Acta Phys. Polon. Supp. 5 (2012) 1101 [arXiv:1209.3976 [hep-ph]];
 W. I. Eshraim, S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 5, 054036 [arXiv:1208.6474 [hep-ph]].

		Conclusions and Outlook
Outlook		

- Decide which minimum is preferable.
- Investigate the complete three-flavor case.

		Conclusions and Outlook
Outlook		

- Decide which minimum is preferable.
- Investigate the complete three-flavor case.

		Conclusions and Outlook ○○●○
Outlook		

- Decide which minimum is preferable.
- Investigate the complete three-flavor case.

000

