DILEPTON PRODUCTION WITH SMASH - A NEW TRANSPORT MODEL

<u>Janus Weil</u>, Jan Staudenmaier, Stephan Endres, Dmytro Oliinychenko, Vinzent Steinberg, Hannah Petersen

Frankfurt Institute for Advanced Studies

FAIRNESS February 18, 2016

• what's so interesting about dileptons?

- some important results
 - NA60
 - HADES
- the SMASH model
 - basic features
 - first dilepton results
 - in particular: focus on ω meson

- dileptons (e^+e^- , $\mu^+\mu^-$) are an important probe of physics at high densities and temperatures
- only em. interaction, traverse hadronic medium
- "electromagnetic probe for studying QCD physics"
- vector mesons carry quantum numbers of a 'heavy photon', can directly convert into a lepton pair
- important application of dileptons: observe in-medium spectral function of vector mesons
- naive expectations: broadening or shift of spectral functions at finite density/temperature

NA60

- important dimuon experiment at CERN-SPS, $\sqrt{s} \approx 17 \, {
 m GeV}$
- NA60 data showed: ρ^0 spectral function substantially broadened in medium (but essentially no mass shift)
- shown by Rapp/Hees: mainly driven by baryonic effects (coupling to N* resonances)
- H. van Hees, R. Rapp, NPA 806 (2008) 339

HADES

- dielectrons, lower energies (SIS18), $\sqrt{s} \approx 2 3 \,\mathrm{GeV}$
- baryon resonances even more important (even in vacuum)

SMASH

- Simulating Many Accelerated Strongly-interacting Hadrons
- new hadronic transport model (written in C++), developed in group of Hannah Petersen at FIAS
- solves the relativistic Boltzmann equation for a hadron gas:

$$p^{\mu}\partial_{\mu}f_i(x,p) = I_{coll}[f_i,f_j,...]$$

- optional: Skyrme potential, Pauli blocking etc
- use test-particle method to improve sampling of phase space
- model is still under development (currently v0.9), but already yields some interesting results
- results shown here: so far only qualitative, need to be worked out further (no detector acceptance yet, etc)

hadrons included in the SMASH model:

- mesons:
 - π, ρ, η, ω, φ, σ, f₂
 K, K*(892), K*(1410)
- baryons:
 - $N + 16 N^*$ states
 - $\Delta + 7 \ \Delta^*$ states
 - $\Lambda + 7 \ \Lambda^*$ states
 - Σ + 4 Σ^* states
 - Ξ, Ω
- plus antiparticles
- assuming isospin symmetry

- primary particle production mechanisms in few-GeV regime:
 - $NN \rightarrow B_1B_2$
 - $\pi N \rightarrow B$
- with baryons $B = N, N^*, \Delta, \Delta^*$
- essentially all mesons ($m = \pi, \eta, \rho, \omega, ...$) produced via B^* decays, $B^* \to mN$ etc
- model currently only contains $1 \leftrightarrow 2$ and $2 \leftrightarrow 2$ processes (in order to strictly fulfill detailed balance)
- no string fragmentation yet
- ω meson:
 - dominantly decays into 3 π (\sim 90%)
 - $\omega \to 3\pi$ emulated by decay chain $\omega \to \rho\pi \to 3\pi$ in Smash

 $2 \rightarrow 1$ resonance production (Breit-Wigner):

$$\sigma_{ab\rightarrow R}(s) = \frac{2J_R + 1}{(2J_a + 1)(2J_b + 1)} \mathcal{S}_{ab} \frac{4\pi}{p_{cm}^2} \frac{s\Gamma_{ab\rightarrow R}(s)\Gamma_R(s)}{(s - M_0^2)^2 + s\Gamma_R(s)^2}$$

$$2 \rightarrow 2 \text{ (e.g. } NN \rightarrow N\Delta)$$
:

$$\sigma_{ab\rightarrow Rc}(s) = C_l^2 \frac{|M|_{ab\rightarrow Rc}^2}{64\pi^2 s} \frac{4\pi}{p_{cm}^i} \int dm^2 \mathcal{A}(m^2) p_{cm}^f$$
with the spectral function $\mathcal{A}(m) = \frac{1}{\pi} \frac{m\Gamma(m)}{(m^2 - M_0^2)^2 + m^2\Gamma(m)^2}$

TIME EVOLUTION OF THE ENERGY DENSITY

- Au + Au at $E_{Kin} = 0.8$ GeV with b = 3 fm
- Landau rest frame energy density T_L^{00} (background color)
- velocity of Landau frame (arrows), both for baryons

time evolution of density at center of collision compared to UrQMD

DILEPTON SPECTRUM: P+P @ 3.5 GEV

- most channels as expected (std Dalitz decays etc)
- ρ includes Dalitz-like contributions from N^* decays
- most surprising: ω

ρ -LIKE CONTRIBUTIONS (B^* DALITZ DECAYS)

- whole cocktail of N^* and Δ^* decays
- different shapes (mostly determined by res. mass)
- plus: "feed-down" from ω (aka ω Dalitz decay)

ω Dalitz decay

- red: Dalitz decay with FF (fit to data)
- blue: 2-step decay via ρ
- both are reasonably similar, but do not agree fully
- \bullet to do: compare to NA60 data for ω FF

ω -like contributions (N^* Dalitz decays)

- again: contributions from several N^* resonances
- structure: peak at ω pole mass, plus Dalitz-like tail
- branching ratios from PDG 2014

ω from Bonn-Gatchina

- new $N^*
 ightarrow N\omega$ branching ratios
- from recent PWA of photoproduction data by Bonn-Gatchina group (arXiv:1601.0609)
- \Rightarrow even stronger ω production (at least in low-mass tail)

Resonance	B.R.	$\delta(\chi^2)$	Resonance	B.R.	$\delta(\chi^2)$
$N(1700)3/2^{-}$	22 ± 12	100	$N(1900)3/2^+$	15 ± 8 13 ± 9	70
$N(1710)1/2^+$	$2\pm 2 \\ 8\pm 5$	26	$N(2000)5/2^+$	$18\pm 8_{1\pm 1}$	42
$N(1720)3/2^+$	26 ± 14	105	$N(2060)5/2^{-}$	4 ± 3	37
$N(1875)3/2^{-}$	$13\pm7_{20\pm4}$	98	$N(2100)1/2^+$	15 ± 10	78
$N(1880)1/2^+$	20 ± 8	33	$N(2150)3/2^{-}$	12 ± 8	99
$N(1895)1/2^{-}$	$28{\pm}12$	100	$N(2190)7/2^{-}$	14 ± 6	131

JANUS WEIL

AU+AU @ 1.25 GEV

• fully dominated by baryonic Dalitz decays via ρ and ω • preliminary! further checks required ...

Summary / Conclusions / Outlook

- the SMASH model shows some interesting first results for dilepton production at SIS energies...
- ullet 2-step VMD approach yields good estimate of ω Dalitz FF
- em. Dalitz decays of N^* resonances are quite important
- \bullet they can not only go through $\rho,$ but also through ω meson
- to do:
 - apply detector acceptance
 - compare to pp data
 - possibly adjust some res. properties (branching ratios etc)
 - look at heavy-ion data
 - cross-check with pion beam

Backup Slides

JANUS WEIL DILEPTON PRODUCTION WITH SMASH

SKYRME POTENTIALS

standard Skyrme-type potential (without mom-dep.):

$$U = a(\rho/\rho_{0}) + b(\rho/\rho_{0})^{\tau} + 2S_{pot}\frac{\rho_{p} - \rho_{n}}{\rho_{0}} \cdot \frac{I_{3}}{I}$$
$$H_{i} = \sqrt{\mathbf{p_{i}}^{2} + m_{i}^{2}} + U(\mathbf{r_{i}})$$

parameters:

 $a = -209.2 \text{ MeV}, b = 156.4 \text{ MeV}, \tau = 1.53, S_{pot} = 18 \text{ MeV}$ [Shanghai WS 2014] \Rightarrow rather soft EOS: K = 240 MeV

equations of motion:

$$\frac{d\mathbf{r}_{\mathbf{i}}}{dt} = \frac{\partial H_i}{\partial \mathbf{p}_{\mathbf{i}}} = \frac{\mathbf{p}_{\mathbf{i}}}{\sqrt{\mathbf{p}_{\mathbf{i}}^2 + m_i^2}}$$
$$\frac{d\mathbf{p}_{\mathbf{i}}}{dt} = -\frac{\partial H_i}{\partial \mathbf{r}_{\mathbf{i}}} = -\frac{\partial U}{\partial \mathbf{r}_{\mathbf{i}}}$$

use Manley/Saleski ansatz:

$$\Gamma_{R \to ab} = \Gamma^0_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab}(M_0)}$$
$$\rho_{ab}(m) = \int dm_a^2 dm_b^2 \mathcal{A}_a(m_a^2) \mathcal{A}_b(m_b^2) \frac{P_f}{m} B_L^2(p_f R) \mathcal{F}_{ab}^2(m)$$

example: L = 1 decays with stable daughters ($\Delta \rightarrow \pi N$, $\rho \rightarrow \pi \pi$):

$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \left(\frac{q}{q_0}\right)^3 \frac{q_0^2 + \Lambda^2}{q^2 + \Lambda^2}$$