Hidden neutrons in HADES pion data

Lukáš Chlad^{1,2}

¹Nuclear Physics Institute of the ASCR, v.v.i. ²Faculty of Mathematics and Physics, Charles University in Prague

Fairness 2016

4th International Workshop for young scientists with research interests focused on physics at FAIR Garmisch-Partenkirchen, Germany

Outline

Introduction

- HADES overview
- Pion beam experiment

2 Elementary reactions

•
$$\pi^- + p \rightarrow \pi^- + \pi^+ + n$$

•
$$\pi^- + p \rightarrow n + \eta \rightarrow n + \pi^- + \pi^0 + \pi^+$$

HADES spectrometer

High Acceptance Di-Electron Spectrometer

- divided into 6 identical sectors
- individual parts: START, RICH, MDC I-IV, Magnet, TOF & RPC, Pre-Shower (going to be replaced by ECAL) and Forward Wall
- measurements at SIS18: C+C @ 1 GeV/u, Ar+KCI @ 1.756 GeV, Au+Au @ 1.23 GeV/u, p+p @ 1.25 GeV and 3.5 GeV, d+p @ 1.25 GeV, π⁻+A

- measuring in-medium broadening of vector-meson resonances
- investigate di-leptons probes from HI collisions
- determine properties of strange hadrons
- detecting particle flow from heavy-ion interactions
- but what if we will use this tool for something else?

Lukáš Chlad (NPI Řež)

- measuring in-medium broadening of vector-meson resonances
- investigate di-leptons probes from HI collisions
- determine properties of strange hadrons
- detecting particle flow from heavy-ion interactions
- but what if we will use this tool for something else?

Lukáš Chlad (NPI Řež)

- measuring in-medium broadening of vector-meson resonances
- investigate di-leptons probes from HI collisions
- determine properties of strange hadrons
- detecting particle flow from heavy-ion interactions
- but what if we will use this tool for something else?

- measuring in-medium broadening of vector-meson resonances
- investigate di-leptons probes from HI collisions
- determine properties of strange hadrons
- detecting particle flow from heavy-ion interactions
- but what if we will use this tool for something else?

- measuring in-medium broadening of vector-meson resonances
- investigate di-leptons probes from HI collisions
- determine properties of strange hadrons
- detecting particle flow from heavy-ion interactions
- but what if we will use this tool for something else?
 ⇒ detection of neutrons

HADES π -beam experiment

- Strangeness program with $p_{\pi} = 1.7 \, \text{GeV/c}$ and targets
 - tungsten
 - carbon
- Baryonic resonances program with
 - $p_{\pi} \in \{656; 690; 748; 800\} \, \mathrm{MeV/c}$ and targets
 - polyethylene
 - carbon

Lukáš Chlad (NPI Řež)

Motivation & Plan of work for neutron detection

- Motivation
 - ♦ Study of exclusive reactions: $\pi^- + p \rightarrow n + \pi^0 / \eta / \omega$
 - Study of short range NN correlations
- Plan of work
 - \diamond Find optimal cuts on neutron hits: $\pi^- + p \rightarrow n + \pi^- + \pi^+$
 - \diamond Investigate the efficiency of these cuts: $\pi^- + p \rightarrow n + \eta$
 - ♦ Analyse π^- + A@1.7 GeV/c data \Rightarrow SRC

Motivation & Plan of work for neutron detection

- Motivation
 - ♦ Study of exclusive reactions: $\pi^- + p \rightarrow n + \pi^0 / \eta / \omega$
 - Study of short range NN correlations
- Plan of work
 - $\diamond~$ Find optimal cuts on neutron hits: $\pi^- + \mathrm{p} \rightarrow \mathrm{n} + \pi^- + \pi^+$
 - $\diamond~$ Investigate the efficiency of these cuts: $\pi^- + \mathrm{p} \rightarrow \mathrm{n} + \eta$
 - ♦ Analyse π^- + A@1.7 GeV/c data \Rightarrow SRC

Pion beam experiment

Analysis scheme

Outline

- HADES overview
- Pion beam experiment

Elementary reactions

- $\pi^- + p \rightarrow \pi^- + \pi^+ + n$
- $\pi^- + p \rightarrow n + \eta \rightarrow n + \pi^- + \pi^0 + \pi^+$

Looking for cuts

What can be used:

- charged particle identification and selection of pairs $\pi^- + \pi^+$
- missing momentum (difference in θ and $\phi < 5^{\circ}$)

$$\vec{p}_{
m n} = \vec{p}_{
m p} + \vec{p}_{
m beam} - \vec{p}_{\pi^-} - \vec{p}_{\pi^+}$$

- time of flight from TOF/RPC H(Tof/Rpc)Cluster->getTof() > 7.5
- MDC as VETO for cluster sector
 - ◇ HParticleEvtInfo->getMdcWiresUnusedSec(isec) ≤ 2 (might be biased by noise per sector)
- Particle candidates as VETO for cluster index
 - HParticleCand->getTofClstInd()
 - ◇ Or HParticleCand->getRpcInd()

All analysis shown here is for $p_{\rm beam}=690\,{\rm MeV/c}$ and PE target

From particle candidate info we get:

Cut on π^- and π^+ region $(\frac{p}{\sqrt{m_{\pi}^2 + p^2}} - 0.2 < \beta < \frac{p}{\sqrt{m_{\pi}^2 + p^2}} + 0.2)$:

10/28

Lukáš Chlad (NPI Řež)

Cut on missing mass ($900 \, {\rm MeV/c^2} < m \, (\pi^- \pi^+)_{\rm miss} < 980 \, {\rm MeV/c^2}$):

If we find hit in TOF/RPC with right position (difference in θ and $\phi < 5^{\circ}$):

Lukáš Chlad (NPI Řež)

Geisha GCalor real data stuno₅ MDC unused wires cut 10⁴ histogram scaling 10³ MDC veto is not very powerful 10² շթուհ 10╞ 45 50 t_{tof} [ns] 5 0 10 15 20 25 30 35 40

⇒ most important cut on ParticleCand and position

Lukáš Chlad (NPI Řež)

Difference in θ angle: $\theta_{expected} - \theta_{cluster}$

Difference in θ angle: $\theta_{expected} - \theta_{cluster}$

Difference in θ angle: $\theta_{expected} - \theta_{cluster}$

\Rightarrow nice correlation in θ angle

 $\pi^- + p \rightarrow \pi^- + \pi^+ + n$

Difference in ϕ angle: $\phi_{expected} - \phi_{cluster}$

 $\pi^- + p \rightarrow \pi^- + \pi^+ + n$

Difference in ϕ angle: $\phi_{expected} - \phi_{cluster}$

 $\pi^- + p \rightarrow \pi^- + \pi^+ + n$

Difference in ϕ angle: $\phi_{expected} - \phi_{cluster}$

Lukáš Chlad (NPI Řež)

Difference in $\|\vec{p_n}\|$ momentum: $\|\vec{p_n}\|_{expected} - \|\vec{p_n}\|_{eluster}$

Geisha GCalor real data ALL hits \$1 \$1 \$1 \$200 2000 histogram scaling 1800 visible shift of real 1600 data from $\Delta p = 0 \,\mathrm{MeV/c}$ 1400 possible 1200 explanations: 1000 imperfect 800 measurement of $p_{\rm beam}$ and/or 600 energy loss 400 corrections inside 200 target -100-20 20 40 60 80 100 ∆p [MeV/c]

Difference in $\|\vec{p_n}\|$ momentum: $\|\vec{p_n}\|_{expected} - \|\vec{p_n}\|_{eluster}$

Geisha

GCalor

real data

position (θ and ϕ) cut

- histogram scaling
- visible shift of real data from $\Delta p = 0 \,\mathrm{MeV/c}$
- nice cutting of the pedestal

⇒ good performance of position cuts

Lukáš Chlad (NPI Řež)

Neutron detection efficiency as a function of θ

TOF

- ♦ SIM/REAL ≈ 1.5 (might be due to background in data)
- \diamond GCalor/Geisha ≈ 1.33

RPC

- ♦ SIM/REAL ≈ 1.6 (might be due to background in data)
- \diamond GCalor/Geisha ≈ 1.4

Neutron detection efficiency as a function of $\|\vec{p}_n\|$

TOF

- ♦ SIM/REAL ≈ 1.5 (might be due to background in data)
- \diamond GCalor/Geisha ≈ 1.33

RPC

- ♦ SIM/REAL ≈ 1.6 (might be due to background in data)
- \diamond GCalor/Geisha ≈ 1.4

Outline

- HADES overview
- Pion beam experiment

2 Elementary reactions

• $\pi^- + \mathbf{p} \rightarrow \pi^- + \pi^+ + \mathbf{n}$ • $\pi^- + \mathbf{p} \rightarrow \mathbf{n} + \eta \rightarrow \mathbf{n} + \pi^- + \pi^0 + \pi^+$

Why η channel?

 $\begin{array}{c} \pi^{-} + p \\ \rightarrow n + \pi^{0} \\ + \text{ high XS} \\ - \text{ detection of } \pi^{0} \rightarrow 2\gamma \\ \text{ decay (98.8\% without} \\ \text{ ECAL difficult, conversion} \\ \text{ probability } \sim 1\%) \\ \end{array} \\ \begin{array}{c} \rightarrow n + \eta \\ + \text{ around threshold} \\ + \text{ detection of } \eta \rightarrow \pi^{-}\pi^{+}\pi^{0} \\ \text{ decay (22.9\%)} \end{array}$

 \rightarrow n + ω

- too much below threshold
- + detection of $\eta \rightarrow \pi^- \pi^+ \pi^0$ decay (89.2%)

 $\pi N \rightarrow \pi N$ 10 E π p->ωn (qm) $\pi^{-}p \rightarrow n\pi^{-}\pi^{-}$ ь πpl≥ηrl 0.1 $\pi^+ p \rightarrow K^+ \Sigma^+$ π⁻p->K⁰ 0.01 1.2 1.3 11 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 sqrt(s) (GeV)

 $p_{\rm threshold} = 685 \,{\rm MeV/c} \Rightarrow$ showing results for $p_{\rm beam} = 800 \,{\rm MeV/c}$

Cross section of reaction channels used in simulation

π^{-} (n)	$p_{ m beam}[m MeV/c]$				couroo
$\pi + p \rightarrow$	666.8	699.7	748.4	799.1	Source
$n + \pi^0$	8.71	8.42	7.17	5.28	[1]
$\mathbf{n} + \pi^0 + \pi^0$	1.53	2.29	2.50	2.66	[2]
$n + \pi^0 + \pi^0 + \pi^0$	0.003	0.009	0.014	0.020	[3]
$n + \eta$	0.0	1.5	2.6	2.6	[4]
$n+\pi^-+\pi^+$	5.49	5.96	6.19	6.60	[2]
$p + \pi^- + \pi^0$	2.43	4.22	4.83	4.82	[2]
$\mathbf{n} + \pi^0 + \pi^+ + \pi^-$	0.8	0.8	0.8	0.8	estimation

data are in mb

[1] Landolt-Börnstein: New Series I/12a, 1972.

[2] D. M. Manley et al.: Isobar-model PWA $\pi N \rightarrow \pi \pi N$ in the c.m. energy range 1320 - 1930 MeV, Phys. Rev. D 30, 1984.

[3] A. Starostin et al. (Crystal Ball): Measurement of the $\pi^- p \rightarrow 3\pi^0 n$ total cross section from threshold to 0.75 GeV/c,

Phys. Rev. C 67, 2003.

[4] S. Prakhov et al.: Measurement of the $\pi^- p \rightarrow \eta n$ from threshold to $p_{\pi^-} = 747 \text{ MeV/c}$, Phys. Rev. C 72, 2005.

Missing mass ($m_\eta = 547.9 \,\mathrm{MeV/c^2}$)

- \diamond requirement to reconstruct π^+ and π^-
- $\diamond~$ hits only in RPC $(11^\circ < \theta < 45^\circ)$ due to kinematics
- hits without matched track
- ♦ $11 \,\mathrm{ns} < t_{\mathrm{tof}} < 28 \,\mathrm{ns}$
- ♦ MDC unused wires ≤ 2

Lukáš Chlad (NPI Řež)

Neutrons @HADES

Missing mass $(m_\eta = 547.9 \,\mathrm{MeV/c^2})$

- ♦ peak in real data is shifted $(\mu = 557.3 \,\mathrm{MeV/c^2})$ due to same reason as for Δp above
- $\label{eq:calor} \begin{array}{l} \diamond \mbox{ very good agreement in sim} \\ (\mu_{\rm GCalor} = 548.7\,{\rm MeV/c^2} \mbox{ and} \\ \mu_{\rm Geisha} = 547.4\,{\rm MeV/c^2}) \end{array}$

Number of neutron candidates in one event

- $\label{eq:constraint} \begin{array}{l} \diamond \quad \mbox{selected neutron with cuts} \\ (\pi^+\pi^-, 11^\circ < \theta < 45^\circ, \\ 11\,\mbox{ns} < t_{\rm tof} < 28\,\mbox{ns}, \mbox{no track} \\ \mbox{matched with hit, MDC unused} \\ \mbox{wires} \leq 2) \end{array}$
- more powerful MDC VETO is nescessary

Lukáš Chlad (NPI Řež)

θ vs. p distribution of neutrons

- $\label{eq:constraint} \begin{array}{l} \diamond \quad \mbox{selected neutron with cuts} \\ (\pi^+\pi^-, 11^\circ < \theta < 45^\circ, \\ 11\,\mbox{ns} < t_{\rm tof} < 28\,\mbox{ns}, \mbox{no track} \\ \mbox{matched with hit, MDC unused} \\ \mbox{wires} \leq 2) \end{array}$
- better agreement of real data and GCalor

Lukáš Chlad (NPI Řež)

Neutrons @HADES

θ vs. p distribution of neutrons

February 18, 2016 22 / 28

θ vs. p distribution of neutrons

+ cut: $528 \,\mathrm{MeV/c^2} < m(\mathrm{n})_{\mathrm{miss}} < 568 \,\mathrm{MeV/c^2}$

Summary and Outlook

$\pi^- + \mathbf{p} \rightarrow \pi^- + \pi^+ + \mathbf{n}$

- tuned cuts for neutron selection
- qualitative agreement of SIM and REAL in neutron detection efficiency
- TO DO
 - improve MDC VETO procedure
- $\pi^- + p \rightarrow \eta + n$
 - TO DO
 - improve neutron hit selection procedure

Thank you for your attention!

Lukáš Chlad (NPI Řež)

Miscellaneous

Calculation of $p_{\rm n}$

$$\frac{l_{\text{path}}}{t_{\text{tof}}} = \beta = \frac{p}{\sqrt{p^2 + m^2}}$$
$$l_{\text{path}} = \sqrt{(x_{\text{ver}} - x_{\text{cluster}})^2 + (y_{\text{ver}} - y_{\text{cluster}})^2 + (z_{\text{ver}} - z_{\text{cluster}})^2}$$

	$p_{ m n}[{ m MeV/c}]$	β	$t_{\rm tof} [{\rm ns}]$
	100	0.11	69.0
	200	0.21	36.1
Neutron $t_{\rm tof}$ to $p_{\rm n}$	350	0.35	21.7
	500	0.47	16.1
	700	0.60	12.7
	900	0.69	11.0

7

Geisha GCalor real data

26 / 28

Geisha GCalor real data

MDC unused wires cut

Geisha GCalor real data

ParticleCands cut

Geisha GCalor real data

position (θ and ϕ) cut

Geisha GCalor real data

final combined cut

Neutron hit θ vs. $\|\vec{p}_n\|$ distribution

real data

- REAL: cutted at low p
- GCalor: very good agreement with REAL
- ◊ Geisha: more hits with lower p
- ◇ all: bit bluring in higher p (exceeding \sqrt{s})

Neutron hit θ vs. $\|\vec{p}_n\|$ distribution

sim with GCalor

- REAL: cutted at low p
- GCalor: very good agreement with REAL
- ◊ Geisha: more hits with lower p
- ◇ all: bit bluring in higher p (exceeding \sqrt{s})

Neutron hit θ vs. $\|\vec{p}_n\|$ distribution

sim with Geisha

- REAL: cutted at low p
- GCalor: very good agreement with REAL
- Geisha: more hits with lower p
- ♦ all: bit bluring in higher p (exceeding \sqrt{s})

Neutron hit θ vs. ϕ distribution

real data

 good agreement between all three cases

Neutron hit θ vs. ϕ distribution

sim with GCalor

 good agreement between all three cases

Neutron hit θ vs. ϕ distribution

θ [deg] sim with Geisha good agreement between all three n 'n

cases

 \diamond