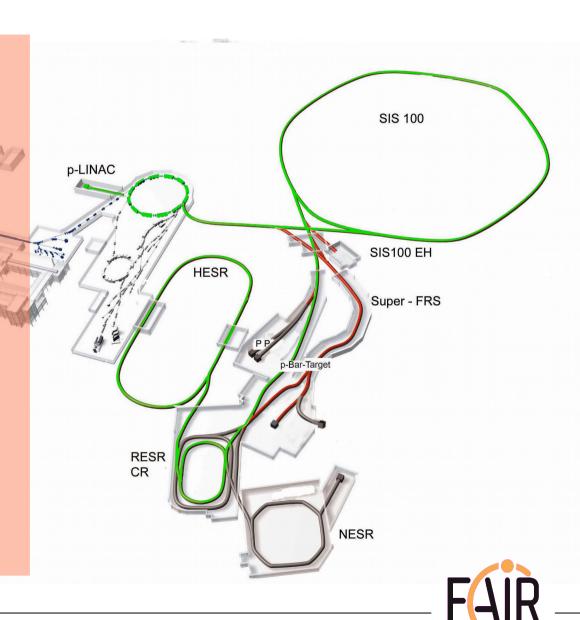
Overview of

PANDA Russia Workshop, May 26, 2014
Lars Schmitt, FAIR Darmstadt

- Antiprotons at FAIR
- PANDA Overview
- PANDA Systems
- TDR Schedule and Conclusions

Antiprotons at FAIR

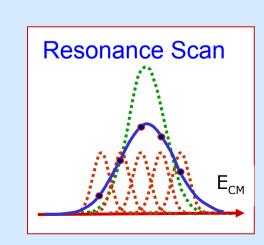


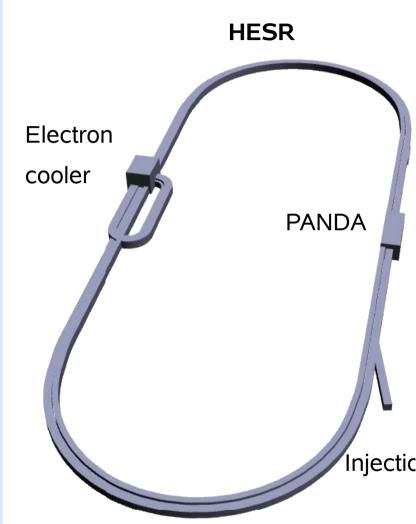
Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- · Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version

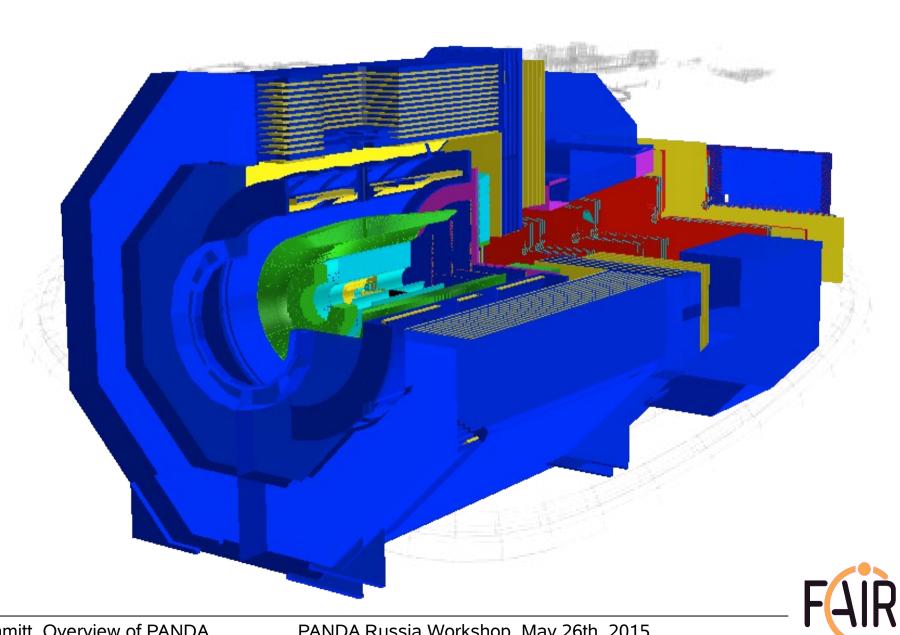
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity


High Energy Storage Ring


HESR Parameters

- Storage ring for internal target
- Initially also used for accumulation
- Injection of p at 3.7 GeV/c
- Slow synchrotron (1.5-15 GeV/c)
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹

Mode	High luminosity (HL)	High resolution (HR)
Δρ/ρ	~10-4	~4x10 ⁻⁵
L (cm ⁻² s ⁻¹)	2x10 ³²	2x10 ³¹
Stored p	10 ¹¹	10 ¹⁰


- Stochastic & electron cooling
- Resolution ~50 keV
- Tune E_{CM} to probe resonance
- Get precise m and Γ

PANDA Overview

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution

Time-like Nucleon Formfactors

→ Measurable in annihilation, discrepancy with space-like

Generalized Parton Distributions
Drell-Yan Process

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

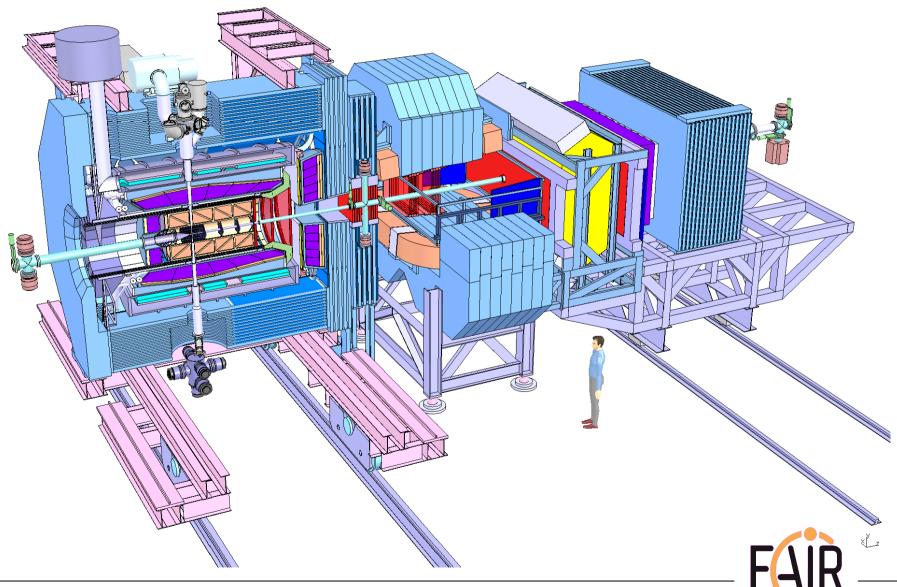
Production of states of all quantum numbers Resonance scanning with high resolution

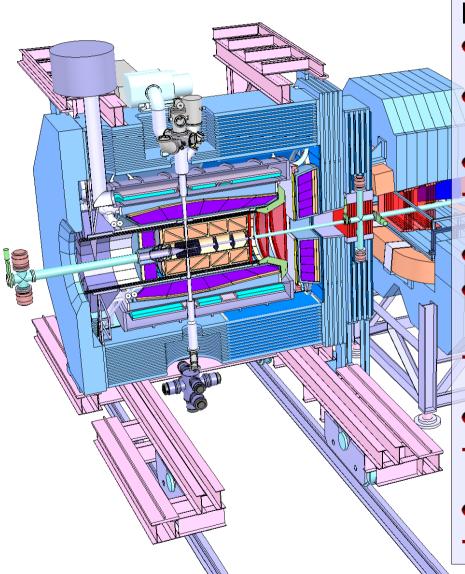
Time-like Nucleon Formfactors

→ Measurable in annihilation, discrepancy with space-like

Generalized Parton Distributions

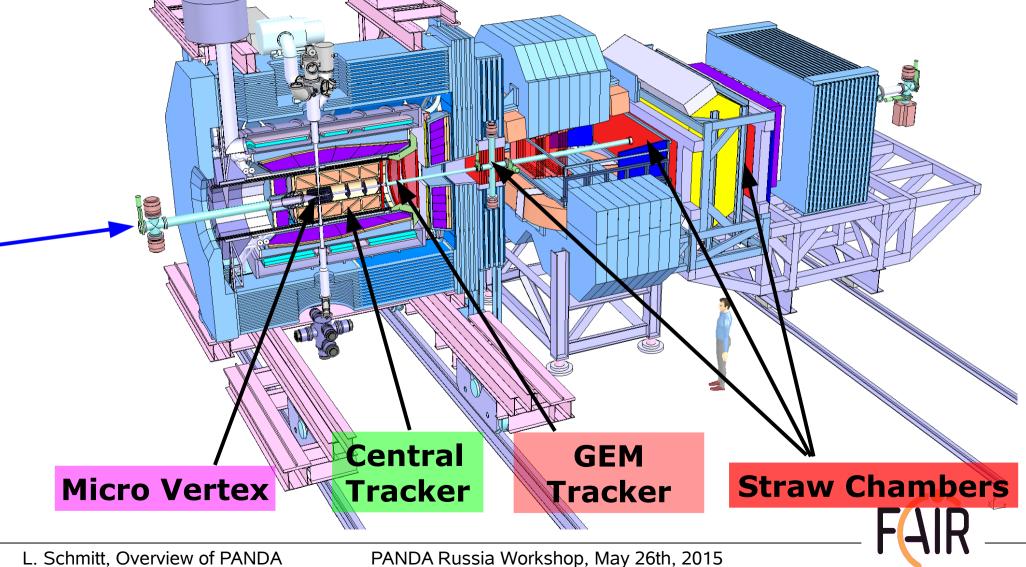
Drell-Yan Process

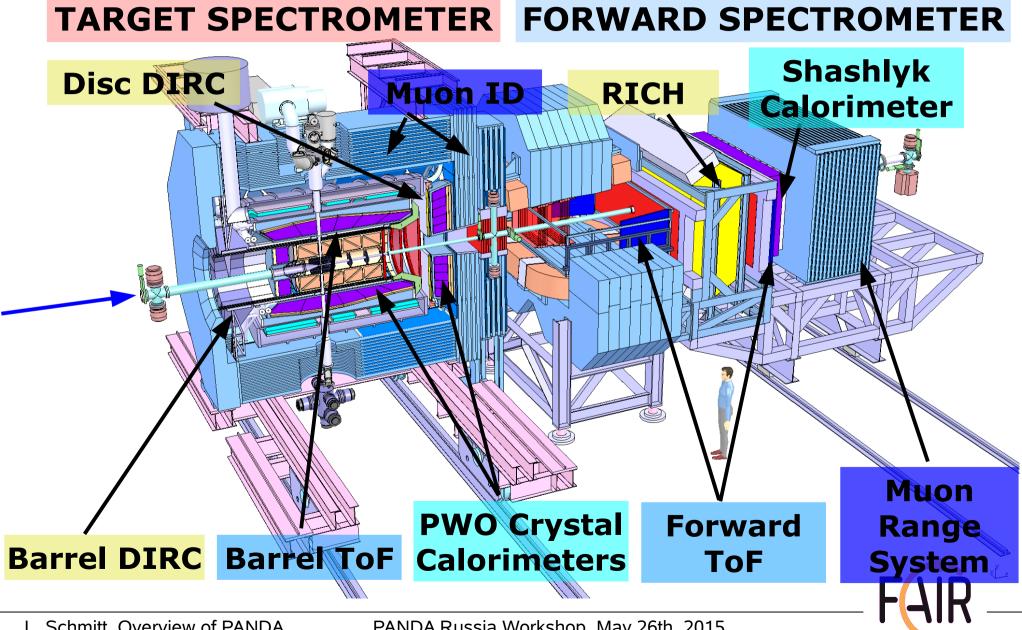

Nuclear Physics


Hypernuclei: Production of double Λ-hypernuclei

γ-spectroscopy of hypernuclei, YY interaction

Hadrons in Nuclear Medium

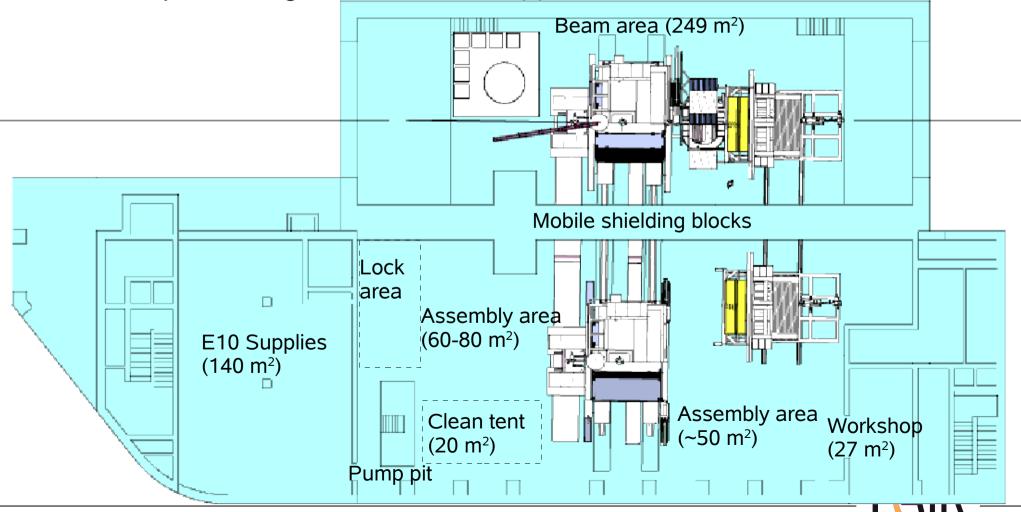



Detector requirements:

- 4π acceptance
- High rate capability:
 2x10⁷ s⁻¹ interactions
- Efficient event selection
- → Continuous acquisition
- Momentum resolution ~1%
- Vertex info for D, K⁰_s, Y
 (cτ = 317 μm for D[±])
- → Good tracking
- Good PID (γ, e, μ, π, K, p)
- → Cherenkov, ToF, dE/dx
- γ-detection MeV 15 GeV
- → Crystal Calorimeter

TARGET SPECTROMETER FORWARD SPECTROMETER Solenoid **Target** Dipole Luminosity **Detector** p-Beam

TARGET SPECTROMETER FORWARD SPECTROMETER



The PANDA Hall

- Architects approaching execution planning
- Detailed layout of infrastructure, shielding, services

Next steps: routing of cables and supplies

PANDA Construction Schedule

Subsystem	2015			2016			2017			2018				2019				2020							
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Dipole								M7/8																	
Forward TOF						M4/7																			
Forward Shashlyk Calorimeter							M7/8																		
Forward Range System																									
Luminosity Detector																									
Supports																									
Supplies																									
Controls																									
Computing																									
DAQ																									
Solenoid					Condu	ctor pro	duction						M8/9												
Cluster Jet Target																									
TS Barrel Muon Detectors																									
TS Endcap Muon Detectors																									
Muon Filter																									
Forward Tracking							M4/7																		
Barrel EMC							Crystal	produc	tion																
Pellet Target											M8/10														
Barrel DIRC							8																		
Barrel Time of Flight (TOF)																									
Interaction Region																									
Micro Vertex Detector (MVD)									M4/8																
Straw Tube Tracker (STT)																									
Backward Endcap EMC	M3/7																								
Planar GEM Trackers																									
Forward Endcap EMC	M3/8							M9/10																	
Endcap Disc DIRC																									
Hypernuclei Primary Target																									
Hypernuclei Germanium Detector																									
Hypernuclei Secondary Active Target																									
Silicon Lambda Disks																									
Forward RICH																									

R&D, **M3**: TDR approved

Tendering, Contract Preparation, M4: Contracts signed

Construction design, M7: Planning completed

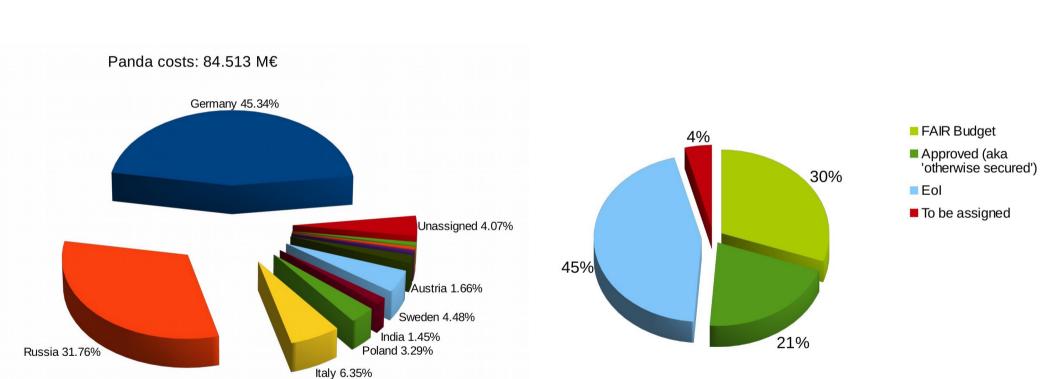
Prototype/Pre-series construction, **M8:** Prototype/Pre-series testing complete, production readiness-

Component construction & testing, Module assembly & testing, M9: Acceptance test completed to change due to Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, M10: Read Political Control of the Change due to

funding and civil construction

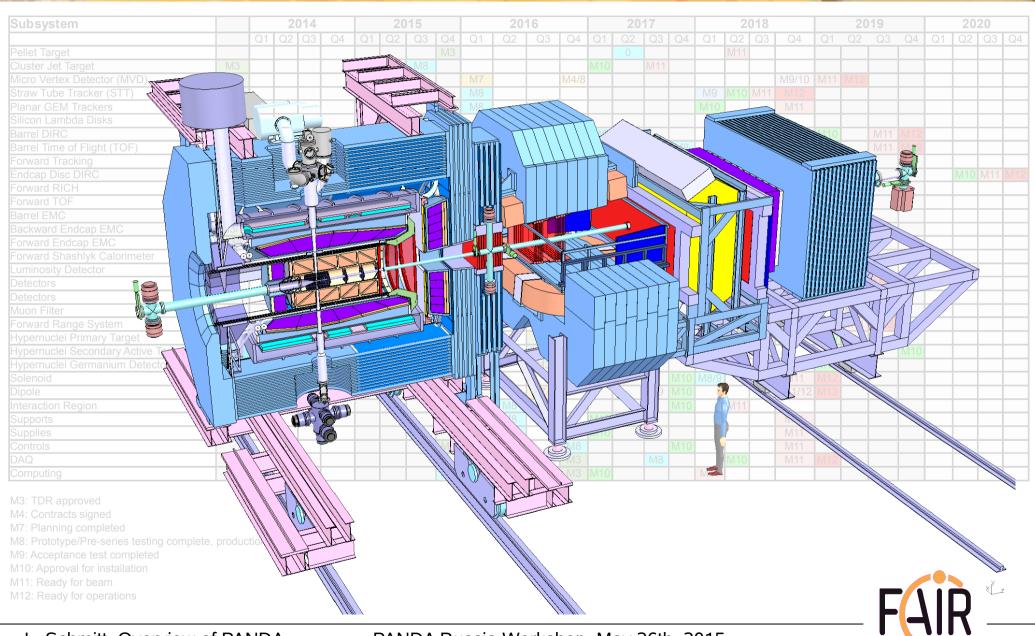
PANDA Installation Schedule

Subsystem		20	XX		20XX+1					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
Dipole										
Forward TOF										
Forward Shashlyk Calorimeter										
Forward Range System										
Luminosity Detector										
Supports										
Supplies										
Controls										
Computing										
DAQ										
Solenoid										
Cluster Jet Target										
TS Barrel Muon Detectors										
TS Endcap Muon Detectors										
Muon Filter										
Forward Tracking										
Barrel EMC										
Pellet Target										
Barrel DIRC										
Barrel Time of Flight (TOF)										
Interaction Region										
Micro Vertex Detector (MVD)										
Straw Tube Tracker (STT)										
Backward Endcap EMC										
Planar GEM Trackers										
Forward Endcap EMC										
Endcap Disc DIRC										
Hypernuclei Primary Target										
Hypernuclei Germanium Detector										
Hypernuclei Secondary Active Target										
Silicon Lambda Disks										
Forward RICH										

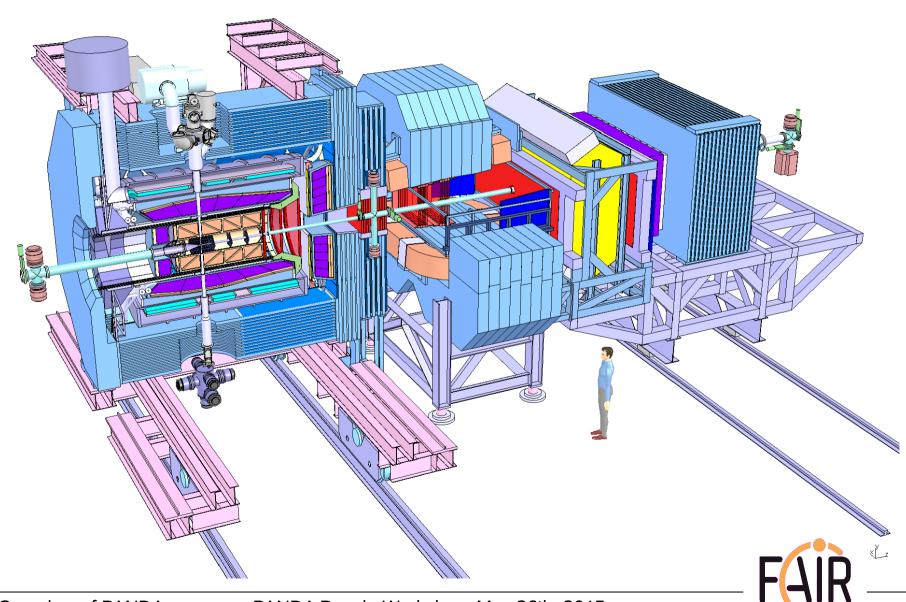

Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, **M10**: Approval for installation Installation at FAIR, commissioning without beam, **M11**: Ready for beam Commissioning with beam, **M12**: Ready for operations

Magnet field mapping

Subject to change due to funding and civil construction

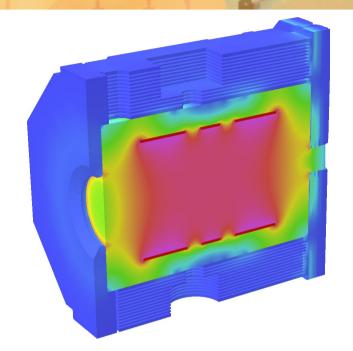


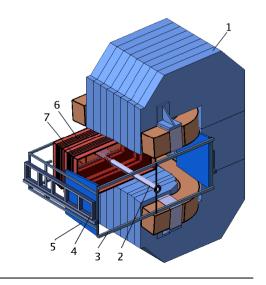
PANDA Funding



PANDA Systems

Approved Systems


Magnets


Solenoid Magnet

- Super conducting coil
- 2 T central field
- Segmented coil for target
- Instrumented iron yoke
- Doors for installation and maintenance
- Status:
 - Cooperation with CERN for cold mass
 - Conductor optimized, close to tender
 - Yoke design complete
- Time critical!

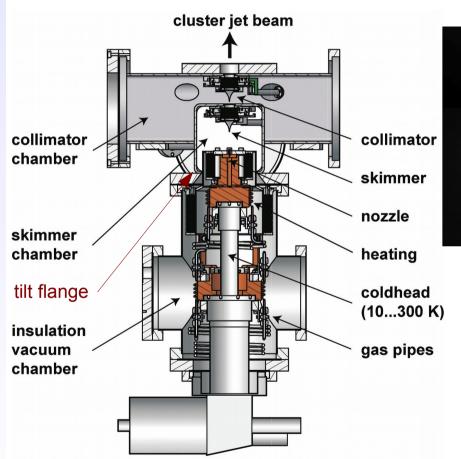
Dipole Magnet

- Normal conducting racetrack design
- Dipole also bends the beam
- Segmented yoke for ramping

PANDA Target

Luminosity Considerations

- Goal: 2x10³² cm⁻²s⁻¹ (HL mode)
- With 10¹¹ stored p and 50 mb: 4x10¹⁵ cm⁻² target density

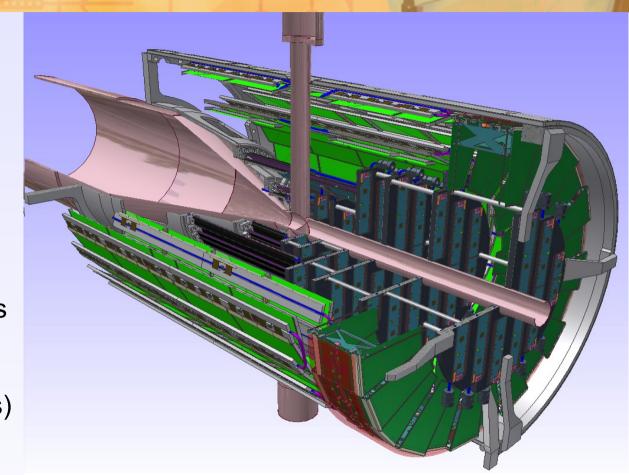

Cluster Jet Target

- Continuous development
 - Nozzle improvement
 - Better alignment by tilt device
 - Record 2x10¹⁵ cm⁻² reached
- TDR approved

Pellet Target

- >4x10¹⁵ cm⁻² feasible
- Prototype under way
- Pellet tracking prototype
- Second TDR part 2015/16

Latest version of the cluster jet target

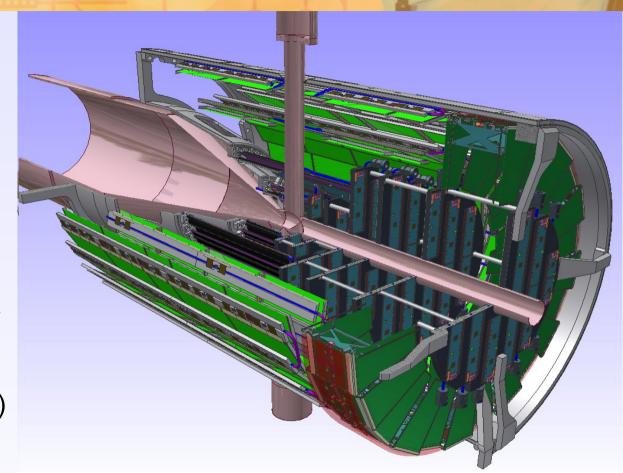

Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Outer layers: double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

Challenges

- Low mass supports
- Cooling in a small volume
- Radiation tolerance


Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Outer layers: double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

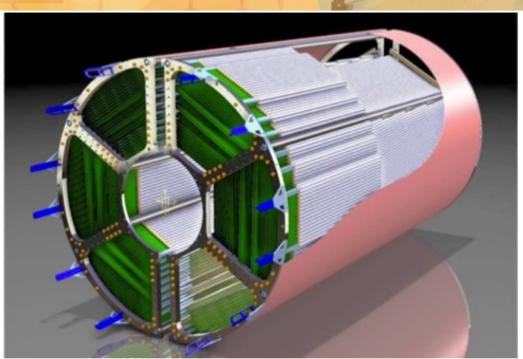
Challenges

- Low mass supports
- Cooling in a small volume
- Radiation tolerance

- ToPiX full version in 2015
- PASTA ASIC in 2015
- Detailed service planning

The Straw Tube Tracker

Detector Layout


- 4600 straws in 21-27 layers, of which 8 layers skewed at ~3°
- Tube made of 27 μm thin Al-mylar,
 Ø=1cm
- ♠ R_{in}= 150 mm, R_{out}= 420 mm, I=1500 mm
- Self-supporting straw double layers at ~1 bar overpressure (Ar/CO₂)
- Readout with ASIC+TDC or FADC

Material Budget

- Max. 26 layers,
- 0.05 % X/X₀ per layer
- Total 1.3% X/X₀

Project Status

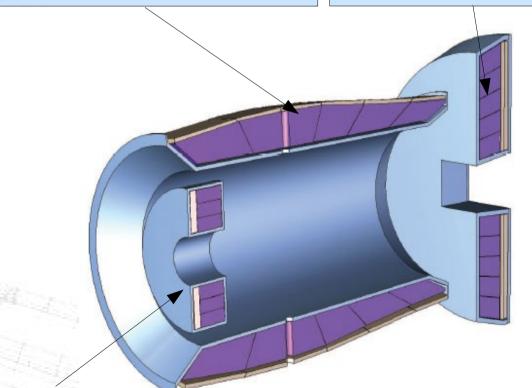
- Prototype construction & beam tests
- Aging tests: up to 1.2 C/cm²
- Straw series production started

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals 54%

Large Area APDs


5x5 mm² 10x10 mm² and 7x14 mm²

Barrel Calorimeter

- 11000 PWO Crystals
- LAAPD readout, 2x1cm²
- $\sigma(E)/E \sim 1.5\%/\sqrt{E} + const.$

Forward Endcap

- 4000 PWO crystals
- High occupancy in center
- LA APD and VPTT

Backward Endcap for hermeticity, 530 PWO crystals

Electromagnetic Calorimeters

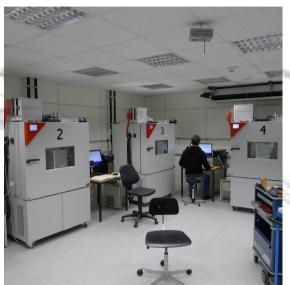
PWO Crystal Production

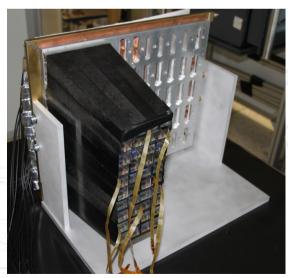
- 2 new producers: SICCAS & Crytur
- 54% of crystals produced
- Eol to fund remaining crystals

APD Screening

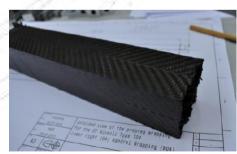
- Screening of 30000 APDs at GSI
- Facility started shift operation

Barrel

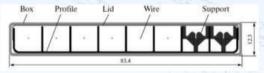

- Mechanics design being finalised
- APD readout ASIC characterisation


Backward Endcap

- Prototyping advanced
- Mech design being finalised

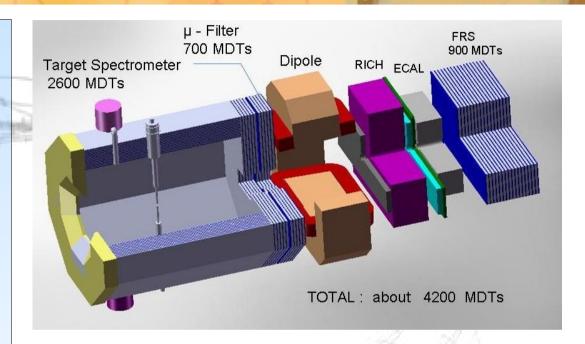

Forward Endcap

- Support frame done
- Module production commencing


Muon Detector System

Muon system rationale:

- Low momenta, high BG of pions
- Multi-layer range system

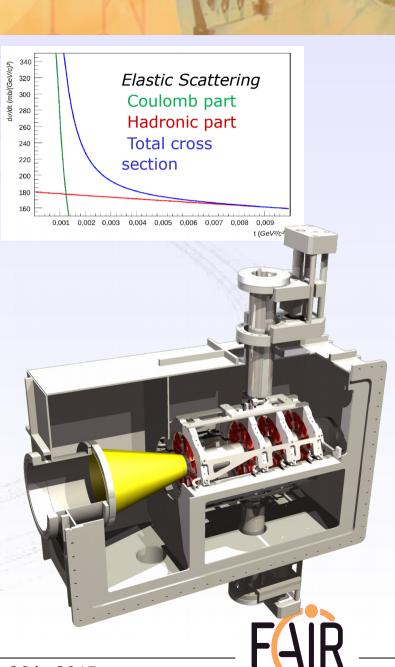

Muon system layout:

- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Fw Range System: 16+2 layers
- Detectors: Drift tubes with wire & cathode strip readout

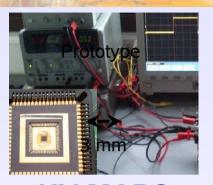
System status

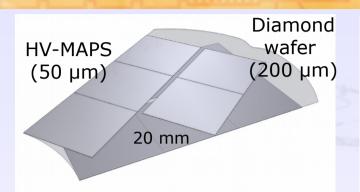

- TDR approved Sep 2014
- Range system tests at CERN

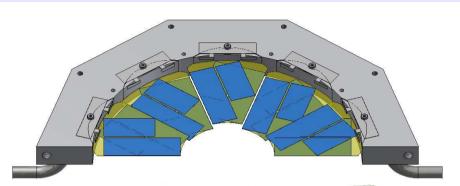
Imminent TDRs: 2015


Luminosity Detector

Elastic scattering:


- Coulomb part calculable
- Scattering of p at low t
- Precision tracking of scattered p
- Acceptance 3-8 mrad

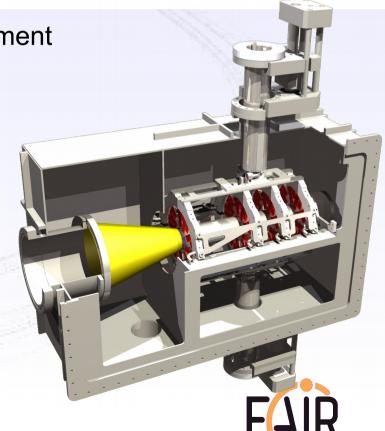

Detector layout:


- Roman pot system at z=11 m
- Silicon pixel detector:
 - 4 layers of HV MAPS (50 μm thick)
 - pixels 80x80 µm²
- CVD diamond supports (200 μm)
- Retractable half planes in secondary vacuum

Luminosity Detector

HV MAPS:

Development at U Heidelberg for Mu2e Experiment


Active pixel sensor in HV CMOS

Digital processing on chip

Testbeam results: S/N ~ 20, Efficiency ~99.5%

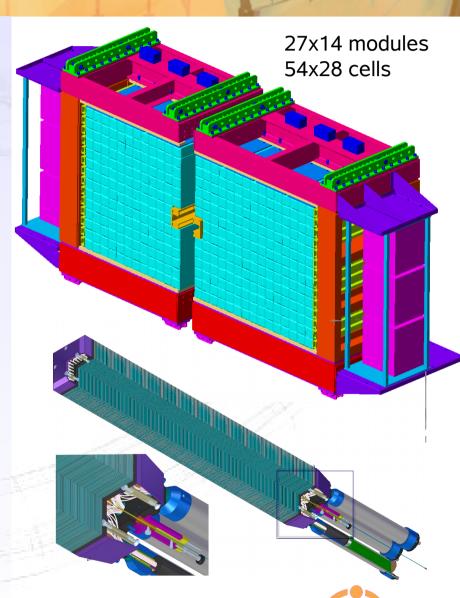
Project status:

- Cooling system prototype tested
- Mechanical vessel and vacuum system prototype tested
- CVD diamond supports available
- TDR in final stage

Forward Shashlyk Calorimeter

Forward electromagnetic calorimeter:

- Interleaved scintillator and absorber
- WLS fibres for light collection
- PMTs for photon readout
- FADCs for digitization
- Active area size 297x154 cm²

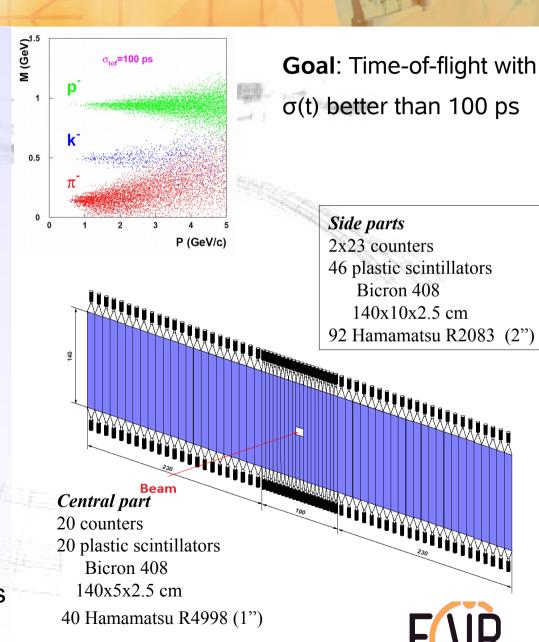

System status:

- Module design 2x2 cells of 5.5x5.5 cm² verified
- Tests with electrons and tagged photons:
- → Energy resolution:

$$\sigma_{\rm E}$$
 /E = 5.6/E \oplus 2.4/ $\sqrt{\rm E}$ [GeV] \oplus 1.3 [%] (1-19 GeV e-) $\sigma_{\rm E}$ /E = 3.7/ $\sqrt{\rm E}$ [GeV] \oplus 4.3 [%]

 $O_{E} / E = 3.77 \ VE [GeV] \oplus 4.3 [\%]$ (50-400 MeV ph)

Time resolution: 100 ps/√E [GeV]

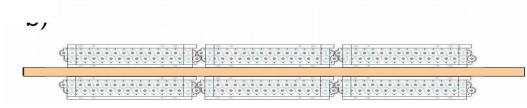

Forward Time of Flight

Forward Spectrometer PID

- Time-of-Flight essential
- No start detector
- Relative timing to Barrel

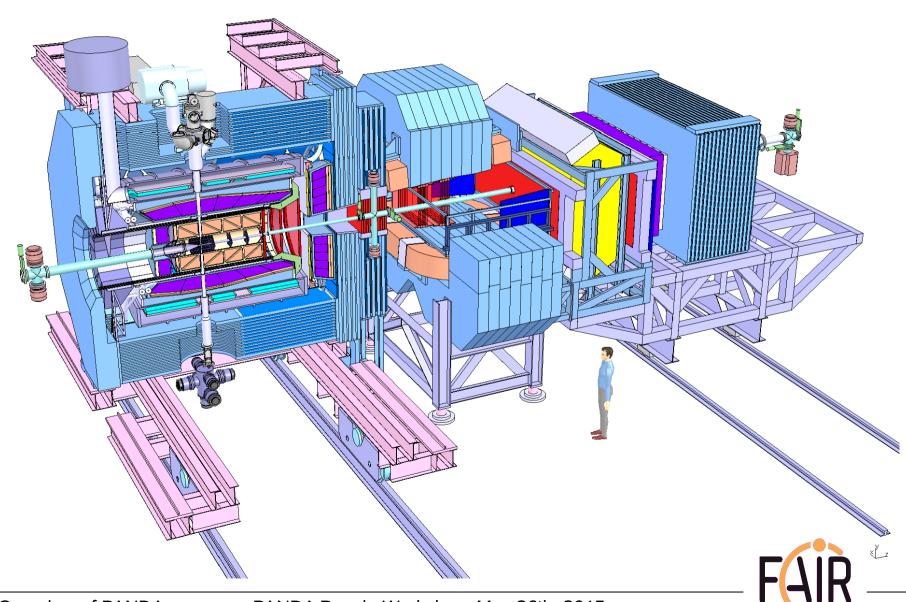
Detector layout:

- Scintillator wall at z=7.5m
 made of 140 cm long slabs
- Bicron 408 scintillator
- PMT readout on both ends
- 10 cm slabs on the sides,
 5 cm slabs in the center
- TDC readout
- Additionally: Side walls inside dipole for low momentum tracks



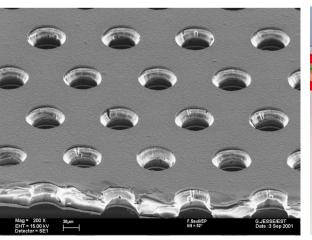
Forward Tracking

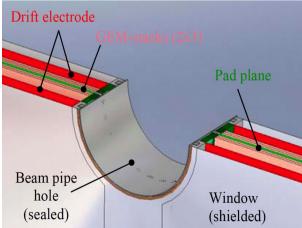
Tracking in Forward Spectrometer

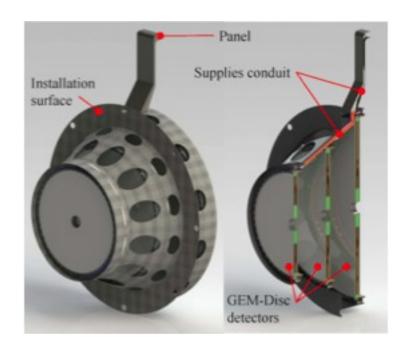

- 3 stations with 2 chambers each
 - FT1&2 : between solenoid and dipole
 - FT3&4 : in the dipole gap
 - FT5&6 : largest chambers behind dipole
- Straw tubes arranged in double layers
 - 27 µm thin mylar tubes, 1 cm Ø
 - Stability by 1 bar overpressure
- 3 projections per chamber (0°, ±5°)

Modular layout of straws

Further Systems: 2016+

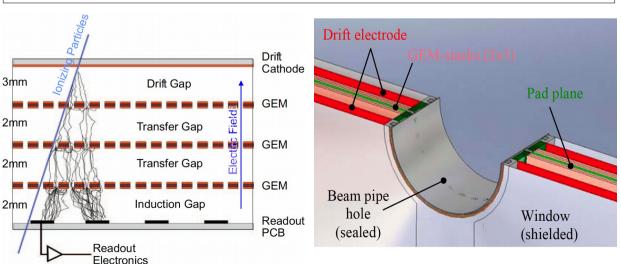


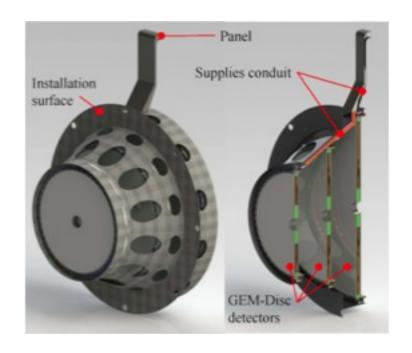

Forward GEM Tracker


r

Forward Tracking inside Solenoid

- 3-4 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- → Approx. 35000 channels total
- Challenge to minimize material




Forward GEM Tracker

er

Forward Tracking inside Solenoid

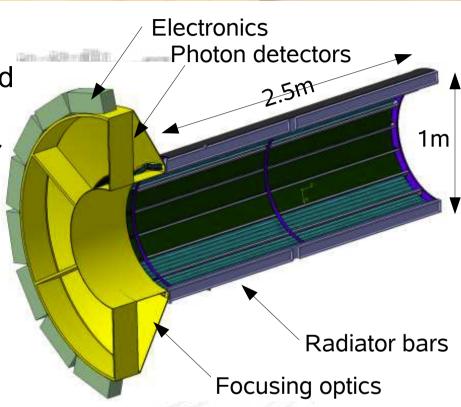
- 3-4 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- → Approx. 35000 channels total
- Challenge to minimize material

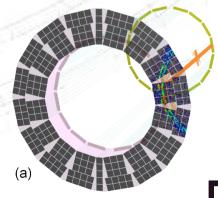
PANDA Barrel DIRC

Baseline design

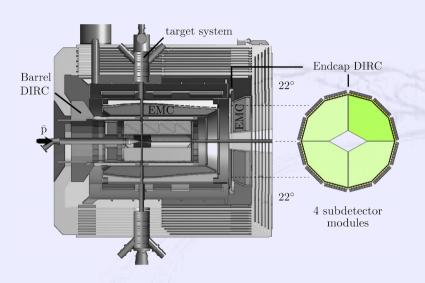
 DIRC: Detection of Internally Reflected Cherenkov light pioneered by BaBar

Cherenkov detector with SiO₂ radiator


Detected patterns give β of particles

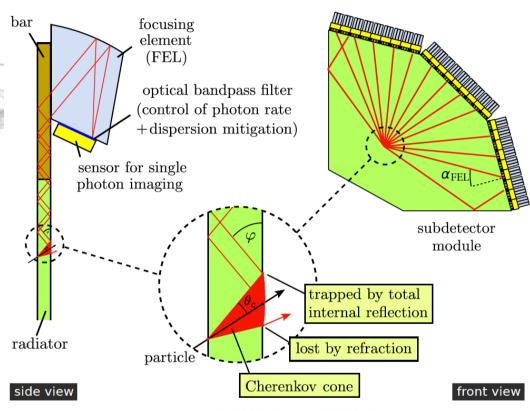

Optimization and challenges

- Focusing by lenses/mirrors
- More compact design
- Magnetic field → MCP PMT
- Fast readout to suppress BG
- Plates as more economic radiator


Project status

- Baseline design verified
- Qualification of final design in 2015

PANDA Disc DIRC



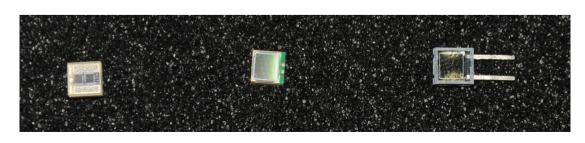
Novel concept for forward PID

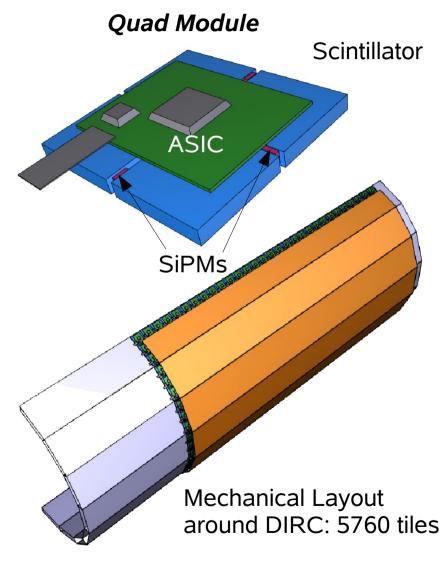
- Based on DIRC principle
- Disc shaped radiator
- Readout at the disc rim

Project status:

- Advanced design, first tests
- Review with external experts
- Next: full quarter disc prototype

Basic components:


- SiO₂ radiator disc
- Focusing element
- Optical bandpass filter
- MCP PMT for photon readout in magnetic field
- ASIC for electronic readout

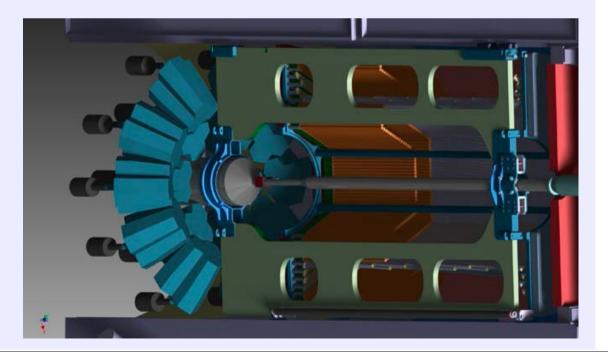


Scintillator Tile Hodoscope

Detector for ToF and event timing

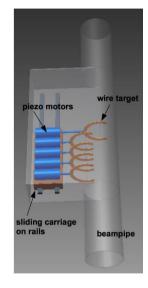
- Scintillator tiles 3x3x0.5 cm³
 - → BC404, BC408 or BC420
 - → Space points with precision timing
 - → Lowest possible material budget
- Photon readout with 2 SiPMs (3x3 mm²)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
 - High intrinsic noise
 - Temperature dependence
- Goal for time resolution: 100 ps
- ASIC for SiPM readout

Hypernuclear Setup

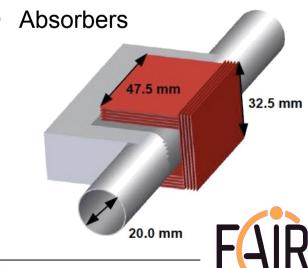


Principle:

● Produce hypernuclei from captured Ξ

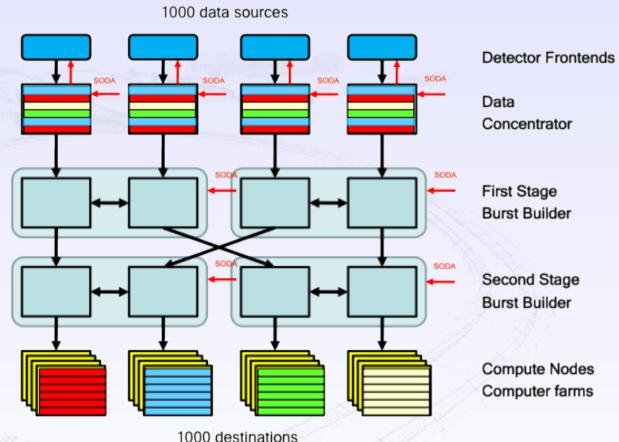

Modified Setup:

- Primary retractable wire/foil target
- Secondary active target to capture ≡ and track products with Si strips
- HP Ge detector for γ-spectroscopy


Primary Target:

- Diamond wire
- Piezo motored wire holder

Active Secondary Target:


Silicon microstrips

PANDA Data Acquisition

Self triggered readout

- Components:
 - Time distribution system
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network
- Data Flow:
 - Data reduction
 - Local feature extraction
 - Data burst building
 - Event selection
 - Data logging after online reconstruction
- Programmable Physics Machine

PANDA TDR Schedule

Submission 2015:

- Q3: Luminosity Detector
- Q3: Forward Shashlyk
- Q3: Forward Time of Flight
- Q4: Forward Tracking
- Q4: Pellet Target Addendum

Submission early 2016:

- GEM Tracker
- Detector Controls

Submission 2016/17:

- Barrel DIRC
- Hypernuclear Setup
- SciTil / Barrel ToF
- DAQ and Computing
- Disc DIRC

Summary

Present Status of PANDA

- Several systems head for TDR submission
- Preparation for Construction MoU
- Physics and detector topics

Timeline of PANDA

- Most TDRs to complete by end 2016
- Start of construction in 2014 for some systems
- Start of possible preassembly at Jülich in 2015
- Ready for mounting at FAIR in 2018/19

PANDA & FAIR start in hadron physics from 2020+

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles
- Beyond PANDA further plans for spin physics at FAIR exist

The PANDA Collaboration

More than 520 physicists from 68 institutions in 18 countries

Aligarh Muslim University
U Basel
IHEP Beijing
U Bochum
Magadh U, Bodh Gaya
BARC Mumbai
IIT Bombay
U Bonn
IFIN-HH Bucharest
U & INFN Brescia
U & INFN Catania
NIT, Chandigarh
AGH UST Cracow
JU Cracow
U Cracow

Karnatak U. Dharwad TU Dresden JINR Dubna U Edinburgh U Erlangen **NWU Evanston** U & INFN Ferrara FIAS Frankfurt LNF-INFN Frascati U & INFN Genova **U** Glasgow U Gießen Birla IT&S. Goa KVI Groningen Sadar Patel U, Gujart Gauhati U, Guwahati IIT Guwahati

IIT Indore Jülich CHP Saha INP. Kolkata **U** Katowice IMP Lanzhou **INFN** Legnaro **U** Lund U Mainz U Minsk ITEP Moscow **MPEI Moscow** TU München U Münster **BINP Novosibirsk IPN Orsay** U & INFN Pavia **IHEP Protvino**

PNPI Gatchina U of Sidney U of Silesia U Stockholm KTH Stockholm Suranree University South Gujarat U, Surat U & INFN Torino Politechnico di Torino U & INFN Trieste U Tübingen TSL Uppsala U Uppsala U Valencia SMI Vienna SINS Warsaw **TU Warsaw**

IFJ PAN Cracow

GSI Darmstadt