

 χ_c

ψ(2S)

Roberta Arnaldi INFN Torino

GSI Pre-colloquium, May 26th 2015

HEAVY-ION PHYSICS

QCD predicts a phase transition from hadronic matter to a deconfined phase (at high temperatures)

QGP at μ ~0 similar to early Universe (~ few first μ s)

Heavy-ion collisions provide experimental access to the QCD matter

LHC: detailed investigation of QGP properties

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		p-A	27-29	
	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		d-Au	200	
LHC	ALICE/ATLAS/ CMS/LHCb	Pb-Pb	2760	2010-2012
		p-Pb	5020	2013

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		p-A	2 ~30 years long story	
	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		d-Au	200	
LHC	LHC ALICE/ATLAS/ CMS/LHCb	Pb-Pb	2760	2010-2011
		p-Pb	5020	2013

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
	Mo	ore than a factor	27-29	
	NA60	energy	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		d-Au	200	
LHC ALICE CMS	ALICE/ATLAS/	Pb-Pb	2760	2010-2011
	CMS/LHCb	p-Pb	5020	2013

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		Fixed target experiments		
	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		Collider exp	periments	
LHC	ALICE/ATLAS/ CMS/LHCb	Pb-Pb	2760	2010-2012
		p-Pb	5020	2013

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
For all e	xperiments,	Pb-Pb	17	1995-2003
the AA program is		p-A	27-29	
NA60	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		d-Au	200	
LHC	ALICE/ATLAS/ CMS/LHCb	Pb-Pb	2760	2010-2011
		p-Pb	5020	2013

LOOKING FOR A SIGNATURE!

How can we observe the properties of the created matter?

- → external probes cannot be used to study its properties
- energetic particles, produced early in the collision, interact with the medium itself, behaving as penetrating probe

changing the temperature of the system (energy and centrality of the collisions) we study how the matter produced in the collisions affects these probes

Heat source (HI collisions)

FINDING A GOOD PROBE...

Which probe should we use to test the QCD matter?

The probe must be produced early in the collision evolution, so that it is there before the matter to be probed

The probe must be well calibrated, i.e. its behaviour in "standard" matter should be under control

AND CALIBRATE IT...

How can we calibrate the probe?

- Using another probe not affected by the dense QCD matter, to define a baseline reference
 - → photons, Drell-Yan dimuons

Using "trivial" collision systems, to understand how the probe behaves in absence of "new physics"

- → pp, pA, light ions collisions
- → comparison of peripheral vs. central collisions

What are the hard probes?

- highly penetrating observables as
 - → High p_T hadrons, jets
 - \rightarrow Open heavy flavors (charm and beauty)
 - → Quarkonia (J/ ψ , ψ (2S), Y(1S), Y(2S), Y(3S))

LET'S SUMMARIZE!

QGP:

deconfined state of matter made of quarks and gluon, supposed to exist in the first instants after Big Bang

Investigated, experimentally, through heavy-ion collisions (if high T and energy density reached)

Looking for QGP signals: "unambiguous" probes for the formation of QGP

Quarkonia: Heavy quark bound state

- J/ψ meson: bound state of a charm quark and its antiquark
- <u>r</u> meson: bound state of a bottom quark and its antiquark

Quarkonia in a QGP:

onset of quarkonia melting above a certain temperature/energy density (Matsui and Satz, PLB 178 (1986) 416)

Quarkonium behavior in AA is investigated in terms of R_{AA} vs centrality

The nuclear modification factor:

medium modifications are quantified through the comparison of quarkonium yield in AA with the pp one, scaled by a geometrical factor (from Glauber model)

$$R_{AA}^{J/\psi} = \frac{Y_{AA}^{J/\psi}}{\langle T_{AA} \rangle \sigma_{pp}^{J/\psi}}$$

if yield in AA interactions scales with the number of binary collisions

$$\rightarrow R_{AA} = 1$$

 $\rightarrow R_{AA} \neq 1$

if there are hot/cold medium effects

1.4

0.8

0.6

0.4

0.2

0

0

ALIC

part

Quarkonium behavior in AA is investigated in terms of R_{AA} vs centrality

15

Quarkonium behavior in AA is investigated in terms of R_{AA} vs centrality

Hot matter effects should be more important in central collisions

Centrality of the collisions measured through N_{part}, i.e. nucleons which have experienced at least one collision [evaluation based on a Glauber model]

bar

1.4

∢

Quarkonium behavior in AA is investigated in terms of R_{AA} vs centrality

ALI-PUB-64802

QGP...

QCD predicts a phase transition from hadronic matter to a deconfined phase (at high temperatures)

