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QCD vs. QED

’t Hooft; Politzer; Gross, Wilczek

QCD as well as QED are local gauge theories

QED: one charge (U(1)); QCD: three charges (= colors) (SU(3))

The Lagrangian reads

LQCD/QED = ψ̄ (γµD
µ −M)ψ − 1

4T
Tr (FµνFµν)

where the covariant derivative and field strength tensor read

Dµ = ∂µ − igGµ = ∂µ − ig
∑

a

GaµT
a ,

Fµν =
i

g
[Dµ, Dν ] = ∂µGν − ∂νGµ−ig [Gµ, Gν ]

where T a = generators of the gauge group with Tr
(

T aT b
)

= Tδab
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The faces of QCD
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Properties and Open questions

→ Confinement:

only color neutral objects travel long distances

→ Only certain quark/anti-quark combinations are allowed:

Mesons:

q̄q (regular), q̄q̄qq (tetraquark), q̄q̄q̄qqq (baryonium), ...

GG, GGG, ... (glueball)

Baryons:

qqq (regular), q̄qqqq (penta-quark), qqqqqq (di-baryon), ...

All those are expected; only regular ones observed
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The problem:

Potential Bound states

QED:

≫ −→

QCD at intermediate or large distances:

≃ −→ ???

exception: low lying states between heavy quarks (see below)
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Quark Masses

Quark Masses (in MS at µ=2 GeV)
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Expect very different phe-
nomena for light (u,d,s)
and heavy (c,b) quarks

• What are the spectra?
Where are the poles?

• What structures
are there?

Study systematically

particle properties,

decays, and interactions!
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Origin of hadron masses

MAtom = (Σimi)×
(

1−C1 × 10−8
)

MKern = (Σimi)×
(

1−C2 × 10−3
)

MHadron = C3(Σimi)+Efield/c
2

for light quarks: Efield/c
2 ≫ C3(Σimi)

for heavy quarks: Efield/c
2 ≪ C3(Σimi)

Higgs mechanism responsible for 10% of light hadron masses,

but for over 90% of heavy hadron masses

Heavy systems are expected to be easier to understand ...
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Heavy Quark Symmetry

see, e.g., Neubert Phys. Rep. 245(1994)259

One may derive from the QCD Lagrangian:

LQCD = q̄f {iv · ∂ + gv · Aata} qf +O(ΛQCD/mf )

At leading order interaction spin and flavor independent!

heavy quark spin and Jlight of light quarks conserved independently

Terms at O(ΛQCD/mf ) contain

→ kinetic energy of heavy quark

→ term breaking spin symmetry

Consequence: mesons form spin multiplets with

mD∗ −mD ∼ ΛQCD , m2
B∗ −m2

B ≃ m2
D∗ −m2

D

which works nicely - also for excited states

→ Amount of spin symmetry violation important diagnostic tool!
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Example 1: Open Charm states
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Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Quark model predicts quantum number dependent spin symmetry violations
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Example 2: Charmonium before 2002

Quark-Model: Eichten et al. PRD 17 (1978)
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Heavy quarkonia

Potential of two static color sources
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(p)NRQCD

Relevant scales: MQ ≫ p ∼MQv ∼ 1/r ≫ E ∼MQv
2

Brambilla et al., EPJC71(2011)1534

→ For systems with small radii: precision calculations

→ Transition to non-perturbative regime can be studied
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Charmonium after 2002
Quark-Model: Eichten et al. PRD 17 (1978)

A new particle Zoo!
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→ missing low lying
states found

→ Above the D̄D
threshold:

⊲ Many new states

⊲ incompatible with

quark model in
mass and

properties

What are they?
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Charged states

2012: Discovery of charged states that

→ have masses in the quarkonium regime;

→ decay with Q̄ und Q in the final state

→ must contain at least 4 quarks

Example: Zc(3900) close to D̄D∗ threshold

BES-III (China), 2013
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Proposals

Hybrid

→ Compact with active gluons and Q̄Q

Tetraquark

→ Compact object formed from (Qq) and (Q̄q̄)

Hadro-Quarkonium

→ Compact (Q̄Q) surrounded by light quarks

Hadronic-Molecule

→ Extended object made of (Q̄q) and (Qq̄)

... or simply a threshold effect?
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(Some) XYZ-states threshold effects?

Bugg PLB598(2004)8; Chen et al. PRD84(2011)094003; Swanson PRD91(2015)034009

(a) (b)

Chen et al., PRD88(2013)036008

Could it be that the origin of Z(3900) is a threshold cusp

followed by perturbative rescattering? —- NO!
For criticism to our point of view see Swanson arXiv:1504.07952
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Why the argument is wrong
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(Some) driven by triangle–effects?

Pakhlov, PLB702(2011)139

D′
s

B

K

D∗

D̄

π

ψ′

MD′
s

mπψ

→ if there are excited Ds in
the proper mass range,
they can produce the
structure Z(4430) in the πψ
invariant mass

... maybe — but certainly not for all XY Z–states, since

mechanism very sensitive to external invariant masses, and, e.g.,

→ X(3872) is seen in B–decays and Y (4260) radiative decays

→ Zc(3900) is seen at different energies in e+e−

→ not applicable to vectors states seen in e+e−
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Heavy Tetraquarks

→ Mesons as anti-diquark–diquark systems

→ Straightforward extension of the quark model

→ Originally proposed by Jaffe for light quarks
Jaffe PRD15(1977)267

→ To account for spectrum propose spin-spin interaction within

diquarks dominant Maiani et al. PRD89(2014)114010

M = M00 +Bc
L(L+ 1)

2
+ a[L(L+ 1) + S(S + 1)−J(J + 1)]

+κcq [s(s+ 1) + s̄(s̄+ 1)− 3]

• Already many ground states

• Each level has isovector and isoscalar state (cf. ρ and ω)

• The larger J the lighter the state (a > 0 from the fit)
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Typical results and problems

Cleven et al., arXiv:1505.01771

Many more charged and neutral states predicted than observed!

67 among 80 ground states still to be discovered

In addition:

Proposed Hamiltonian without microscopic justification

Special feature: very light J = 3 state
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Hadrocharmonium
M. B. Voloshin, PPNP61(2008)455

→ Extra states are viewed as compact Q̄Q

surrounded by light quarks

→ Provides natural explanation why, e.g., Y (4260)

is seen in J/ψππ final state but not in D̄D

→ Heavy quark spin symmetry demands that spin of the core is

conserved in decay to charmonia

→ Explaining e+e− → hcππ

needs mixing between states

with sc̄c = 0 and sc̄c = 1

leading to Y (4260) and Y (4360)
Li & Voloshin MPLA29(2014)1450060
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Hadrocharmonium: new states

The above mentioned mixing suggests for the unmixed states:

Ψ3 ∼ (1−−)cc̄ ⊗ (0++)qq̄ Ψ1 ∼ (1+−)cc̄ ⊗ (0−+)qq̄ ,

where the heavy cores are ψ′ and hc.

−→ get spin partners via ψ′ → η′c and hc → {χc0, χc1, χc2}

Cleven et al., arXiv:1505.01771

Special feature: very light 0−+ state that should not decay to D∗D̄
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Molecular states

Are expected near thresholds of narrow particle pairs
Filin et al., PRL 105, 019101 (2010); Guo et al., PRD 84, 014013 (2011)

But not near all of them:

→ Interaction not necessarily attractive

→ Isovector meson exchanges give 〈~τ(1) · ~τ(2)〉 = 2I(I + 1)− 3

Expect either I = 1 or I = 0 states (not both) for given JPC

Example: 1/2+ multiplet {D,D∗} and 3/2− multiplet {D1, D2} →
3−±: D∗D2

0−±: D∗D1

2−±: D∗D1−D∗D2−DD2

1−±: DD1−D∗D1−D∗D2 (Y (4260), Y (4360) (I=0))

2++: D∗D∗

1++: DD∗ (X(3872) (I=0))

1+−: DD∗−D∗D∗ (Zc(3900), Zc(4020) (I=1))

0++: DD−D∗D∗;

Special feature: 1−± states as lightest neg. parity states!
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Molecular states: An example

Nontrivial statements from the molecular picture
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Observation:

|MX−MD−MD∗ |=(0.17±0.26) MeV

|MY −MD−MD1
|≃30 MeV

|MZ−MD−MD∗ |<20 MeV

What follows,

if these were

molecules?

→ for transitions and

→ line shapes
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A possible scenario

We proposed:

→ Y (4260) is a D1(2420)D̄–molecule

→ Zc(3900) is a D∗D̄ molecule

A molecule decays via its constituents

Within this picture Zc was found in Y (4260) decays
since the decay D1 → Dπ provides many slow D∗D pairs

π

c

D1 D

D

*

Y(4260) Z (3900)

Q. Wang, CH and Q. Zhao, Phys. Rev. Lett. 111 (2013) 132003
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Consequences I

We claim that Zc (I(JPC = 1(1+−)) is a (D̄∗D+D∗D̄) state with

Z+
c ∼ D∗+D̄0 , Z0

c ∼ 1√
2
(D ∗+D−−D ∗0D̄0) , Z−

c ∼ D ∗0D−

If now X(3872) (I(JPC = 0(1++)) is a (D̄∗D−D∗D̄) state with

X ∼ 1√
2
(D∗+D−+D∗ 0D̄0)

there must be Y (4260) → γX(3872) F.-K. Guo et al., PLB 725 (2013) 127-133

π
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−→ 1 D
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D

X(3872)Y(4260)

How can we unravel the mysteries of the XYZ states? – p. 28/33



and indeed ...

BES-III data for Y (4260) → γX(3872) → γ[ππJ/ψ]

fully in line with prediction
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Note: transition also natural within tetraquark picture
Maiani et al., PRD89(2014)114010
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Consequences II ...
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Γ(X(3872) → γψ′)/Γ(X(3872) → γJ/ψ)

k

The ratio

Γ(X(3872) → γψ′)

Γ(X(3872) → γJ/ψ)
= 2.46± 0.64± 0.29

LHCb, NPB886(2014)665

is not sensitive to the molecular component, since

→ the loop depends on gψ′DD/gJ/ψDD

→ there is a leading order counter term

F.-K. Guo et al., PLB742(2015)394
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What’s next?
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Different scenarios give

different predictions, for

→ spin partner(s)

→ the decay rates

Theory needs to provide

predictions for all scenarios

... and we need more data

especially in other channels!

and in the bottom sector!
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Summary

These are exciting times for strong interaction physics:

−→ We are about to change the paradigms

What it takes is high quality experiments

analyzed with modern, controlled theory tools

The overall picture is still to come — and it promises to provide

deep insights into the inner workings of the Standard Model

... an probably beyond

Thank you very much for your attention
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