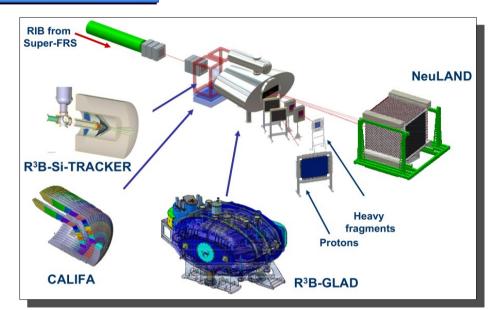
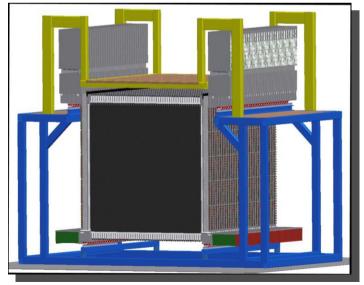
R³B NeuLAND Progress at RIBF and GSI

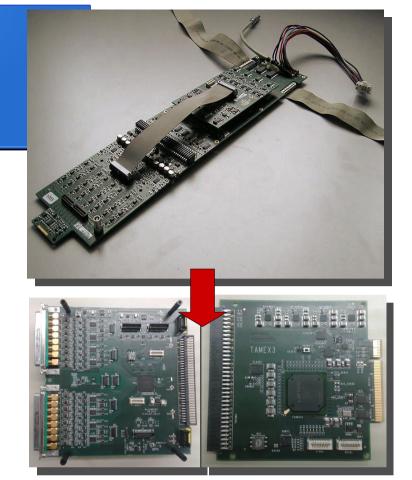


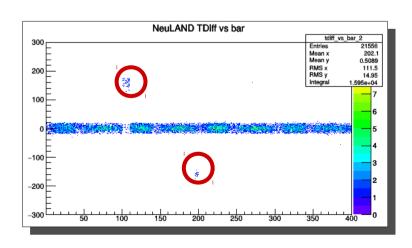

Overview

- NeuLAND
- Development/manufacturing progress at GSI
- RIKEN autumn 2015 commissioning and experiments
- RIKEN accepted proposals

NeuLAND

- NeuLAND = High resolution fast neutron ToF spectrometer for R₃B
- Goals:
 - Efficiency 1n: 90% @ ~200MeV, 95% @ − 1.0GeV
 - -60% efficiency for 4n
 - Separation of up to 5 neutrons
- Specs:
 - Fully active plastic detector
 - -3000 scintillator bars, 2.5m x 5cm x 5cm
 - -6000 PMTs
 - Each plane = 50 bars, two crossed planes
 form a double plane → 30 double planes
 - Double planes act as modules, dedicated readout electronics and HV separable
 - Full WxHxD = 2.5m x 2.5m x 3m


Current status


- Demonstrator variants have been active in several beam times
 - Tacquila + VME and TAMEX1 readout electronics
 - 4 double-plane demonstrator + Tacquila currently in RIKEN
- Construction progressing at GSI
 - Another 4 finished double planes
 - → presently 8 in total
 - First support structure for 20 double planes manufactured
- New readout electronics TAMEX3 underway
- New HV distribution system from PNPI

TAMEX

- Replaces Tacquila = ASIC based single-hit TDC
- TAMEX = FPGA based multi-hit TDC
 - 20..150 ps time resolution, depending on amplitude
 - -< 1% energy resolution</p>
- Local power regulators
 - Tacquila plagued by global voltage regulation issues
 - Noisy regulators behind copper backplane, one for each card
- 4 PCs for the final 30 double planes
- Fiber readout
 - Tacquila read out with GSI SAM VME modules
- Each PC with TRIXOR card → TRIVA bus → MBS

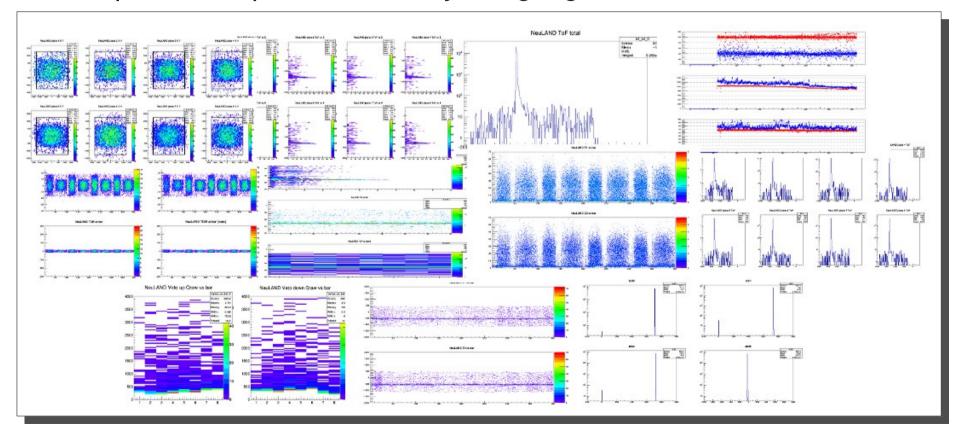
Last year's cliffhanger: RIKEN

NeuLAND @ RIBF

- NeuLAND at SAMURAI setup, RIKEN 2015-2017
 - Jan: Arrival
 - Feb-Mar: Installation, integration, tests
 - Aug: Experiment preparations

- Two experiments autumn 2015
 - Oct-Nov: ImPACT, nuclear transmutation
 - Nov-Dec: machine study + SAMURAI21

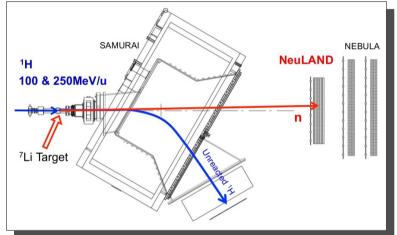
NeuLAND @ RIBF


ImPACT

(Impulsing PAradigm Change through disruptive Technologies)

- Collecting data on long lived fission products
- Search for transmutation paths
- NeuLAND contribution: Neutron trigger with NEBULA
- For us: commissioning and preparation
- Wanted healthy and robust state for machine study and SAMURAI21
- ✓ DAQ trial: NeuLAND MBS
 → SAMURAI RIBFDAQ
- Initial iteration of analysis/monitoring tools with RIBF ANAROOT analysis framework developed and tested

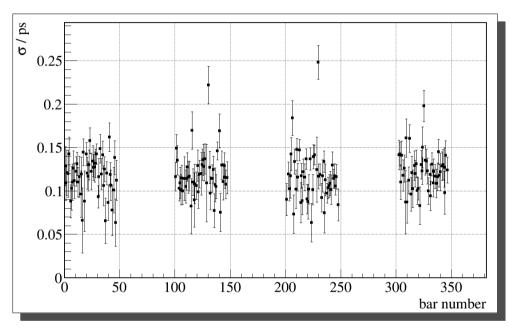
Online monitor

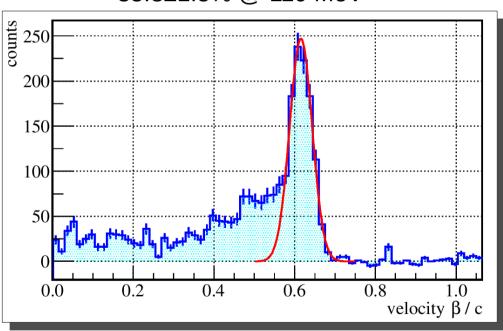

- Based on nearline histograms from GSI
- Clients adjusted to server configuration on-the-fly
- Snapshot dump to file for easy e-log:ing



Machine study

- 7Li(p,n)7Be @ 110 MeV and 250 MeV
 - Used for both NEBULA and NeuLAND calibration
 - Quasi-monoenergetic neutron source with leading tail
 - 1Mhz proton beam,1.5kHz Beam x NeuLAND
- For performance evaluation
 - 1n efficiency
 - Data for multi-neutron identification developments

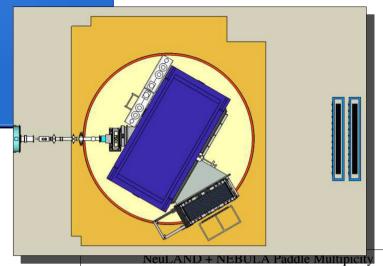


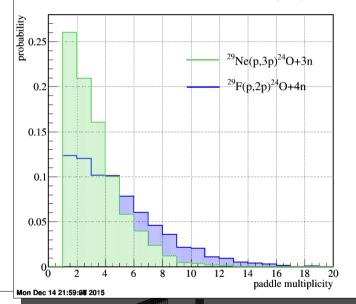

Machine study Preliminary results

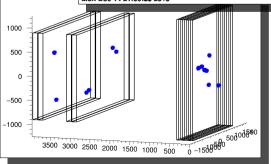
Analysis by J. Kahlbow, IKP TU Darmstadt

Cosmic ray time resolution = 118±18 ps, comparable to GSI

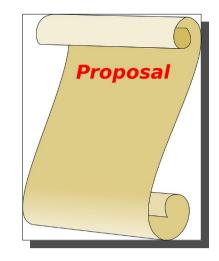
n det. eff.: 38.5±1.6% @ 250 MeV 35.8±1.5% @ 110 MeV



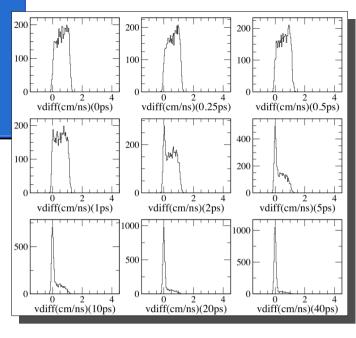

Prognosis: Results in May 2016


SAMURAI21

Spokesperson Y. Kondo (TiTech)

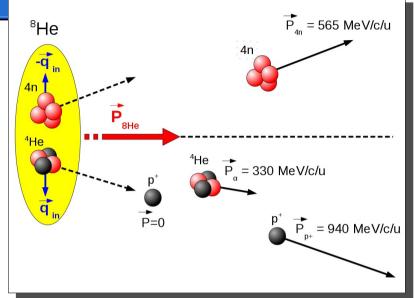

- Oxygen isotopes at the neutron dripline
 - -29Ne(p,3p) 27 O+3n
 - $-29F(p,2p)^{28}O+4n$
 - And also ²⁹Ne(p,2p)²⁸F
- People curious about this region
 - Kink on the neutron-rich side
 - Rapid shell structure changes in the vicinity
- High neutron detection efficiency requirement
 - NeuLAND collaborated with NEBULA
- Analysis on-going
 - Incoming & outgoing ID + fragment arm ok
 - In-depth neutron analysis pending
 - Next meeting on the 16th of March

On the RIKEN horizon


- In May: Equation of state
 - Stricter limits on nuclear symmetry energy
- Accepted group proposals, not yet scheduled:
 - Caesar: ²⁶O g.s. lifetime
 - Paschalis (Rossi) & Shimoura: ⁸He(p,pα)4n
 - Aumann & Nakamura: Dipole response
 - 6,8He, 24O, 29F

Equation of state

- Pinning down the density-dependent symmetry energy
 - RIBF energies → ρ/ρ_0 ≈2
- Several ways to go
 - pion +/- ratio, p/n ratio, ...
- TPC for charged particle tracks, will go inside SAMURAI
- Hmm, neutrons, how do we detect them...
- Enhanced detection efficiency of NeuLAND+NEBULA again important


Caesar: 260 g.s. lifetime

- Experiments suggest very short lived g.s.
 - -2n decay?
- Exp. (MSU) $T_{1/2}$ =6.5 ps \rightarrow theory 1 keV...
 - $-T_{1/2}$ with large uncertainty, reliant on good conditions to extract peak shift from ToF differences
- Reduce dependency on absolute velocity calibration
 - Optimized in the few ps range, down to 1 ps possible
- Good time resolution from NeuLAND + NEBULA

Paschalis & Shimoura: 4n

- 8He(p,pα)4n
 - Charged particles allows
 4n reconstruction
 - NeuLAND + NEBULA to investigate the decay
 - 2n to find n-n correlations
 - 3n to be kinematically complete
- Similar: Kisamori, 8He(p,2p)7H → t + 4n
 - Search for narrow 7H ground state + 4n
 - 4n reconstruction for 7H, NeuLAND + NEBULA essential

Aumann & Nakamura: Dipole response

- 6He: no high energy data available
 - Only up to first photo-absorption peak
- 8He: only low-lying 2n decay fully identified
 - No exp. data for theory after 4n kicks in
 - Invariant mass → all 4n needed
- 24O and 29F
 - Dipole response measured for the first time
- All candidates for pygmy resonances

To conclude

- Production and development going strong at GSI
- More than 1/3 of NeuLAND will be ready for GSI beam beginning of 2018
- Successful integration and runs at RIBF
- Several in-group accepted proposals ready

Towards the FAIR proving grounds!

H. Törnqvist, R³B NeuLAND, NUSTAR Annual Meeting March 2016