

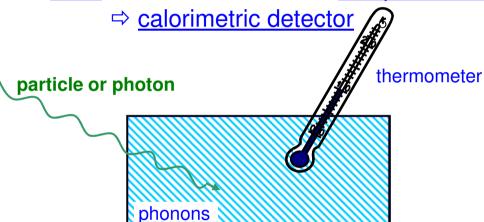
Calorimetric Low Temperature Detectors for Applications in NUSTAR

Peter Egelhof

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany and University Mainz, Germany

NUSTAR Annual Meeting 2016 GSI, Darmstadt February 29 - March 4, 2016

Calorimetric Low Temperature Detectors for Applications in NUSTAR


- I. Introduction
- II. Detection Principle and Basic Properties of Calorimetric Low Temperature Detectors (CLTD`s)
- III. CLTD's for High Resolution Detection of Heavy Ions
 - Design and Performance
- IV. Applications of CLTS's in Heavy Ion Physics
 - Status and Perspectives
- V. Conclusions

I. Introduction

The <u>success of experimental physics</u> and the <u>quality of the results</u> generally depends on the <u>quality of the available detection systems!</u>

⇒ idea: detection of radiation independent of ionisation processes

interaction of radiation with matter:

primary: ionization, ballistic phonons (conventional ionisation detectors)

secondary: thermalization:

conversion of energy to heat

- ⇒ detection of thermal phonons
- ⇒ <u>calorimetric detectors</u>

potential advantage:

- energy resolution
- energy linearity
- detection threshold
- radiation hardness
- ⇒ various applications in many fields of physics

Applications of Low Temperature Detectors - an Overview

Astrophysics:

- dark matter
 ⇒ low detection threshold
- solar neutrinos
 ⇒ low detection threshold
- cosmic x-rays⇒ high energy resolution

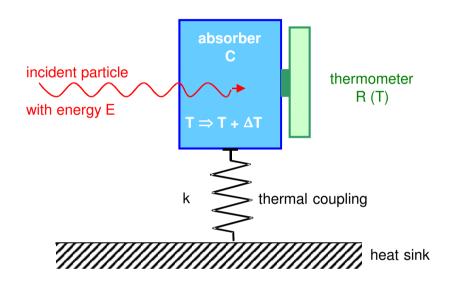
Particle physics:

- $\beta\beta0\nu$ -decay \Rightarrow absorber = source (130 Te)
- neutrino mass from β- endpoint determ.
 ⇒ absorber = source (¹⁸⁷Re)

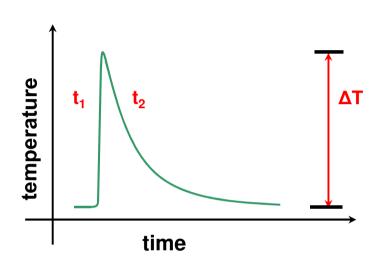
Atomic and Nuclear physics:

- X-ray detection
 ⇒ high energy resolution
- Ion detection
 - ⇒ high energy resolution
 - ⇒ good energy linearity

Applied physics:


- x-ray material analysis
 ⇒ high energy resolution
- life sciences (MALDI)
 ⇒ high energy resolution

for more detailed information see:


- Cryogenic Particle Detection,
 Topics in Applied Physics 99 (2005)
- Proceedings 15th Int. Workshop on Low Temperature Detectors, JLTP (2014), 320 participants!

II. Detection Principle and Basic Properties of Calorimetric Low Temperature Detectors (CLTD`s)

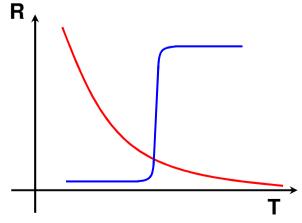
detection principle:

thermal signal:

amplitude: $\Delta T = E/C$ (C = c • m = heat capacity)

rise time: $\tau_1 \ge \tau_{therm} \quad (\approx 1 - 10 \; \mu sec)$

fall time: $\tau_2 = C/k$ ($\approx 100 \, \mu sec - 10 \, msec$)


Optimization of the Sensitivity

- a) <u>absorber:</u> maximum sensitivity $\Delta T = E/mc$ for
 - small absorber mass m
 - small specific heat c

due to:
$$c = \alpha T + \beta (T/\theta_D)^3$$
 (θ_D = Debye-temperature) electrons lattice

- ⇒ low operating temperature ⇒ "low-temperature detector" $(\alpha T \text{ dominating for } T \le 10 K \Rightarrow \text{insulators } (\alpha = 0) \text{ or superconductors})$
- b) thermometer: for thermistor (bolometer): $\Delta T \rightarrow \Delta R \rightarrow \Delta U$ \Rightarrow maximum sensitivity for large dR/dT
- semiconductor thermistor
 due to appropriate doping ⇒ exponential behavior of R(T)
- superconducting phase transition thermometer

Potential Advantage over Conventional Detectors

- small energy gap ω
 - ⇒ better statistics of the detected phonons

semiconductor detector: $\omega \approx 1 \text{ eV}$

calorimetric detector: $\omega \le 10^{-3} \text{ eV}$

$$\frac{\Delta E_{calorimeter}}{\Delta E_{semicond.det.}} = \sqrt{\frac{N_{electr.}}{N_{phon.}}} = \sqrt{\frac{\omega_{phon}}{\omega_{electr.}}} \le \frac{1}{30}$$

- more complete energy detection ⇒ better linearity and resolution energy deposited in phonons and ionisation contributes to the signal (for ionisation detectors: losses up to 60-80% due to: recombination direct phonon production)
- small noise power at low temperatures
- method independent on absorber material
 - ⇒ optimize radiation hardness, absorption efficiency, etc.

Theoretical Limit for the Energy Resolution

for ideal calorimetric detector:

- thermodynamic fluctuations (quantum statistics)
- Johnson noise
- amplifier noise

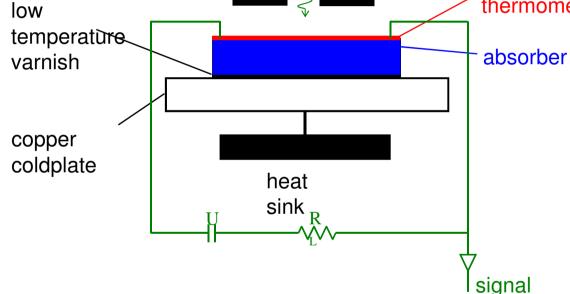
$$\Rightarrow <\Delta E> = \xi \bullet \sqrt{k_B T^5 c m} \quad 1<\xi<3$$

noise thermodynamic fluctuations

<u>example</u>: 1 MeV particle in a 1 mm³ sapphire absorber

Т	С	ΔT	ΔE_{theor}
300 K	3 • 10 ⁻³ J/K	5 • 10 ⁻¹¹ K	1.8 GeV
10 K	4 • 10 ⁻⁷ J/K	4 • 10⁻⁻ K	700 keV
<u>1 K</u>	4 • 10 ⁻¹⁰ J/K	<u>0.4 mK</u>	<u>2.2 keV</u>
100 mK	4 • 10 ⁻¹³ J/K	400 mK	7 eV

⇒ for low temperature: microscopic particle affects the properties of a macroscopic absorber


III. CLTD`s for High Resolution Detection of Heavy Ions- Design and Performance

<u>Detector Design and Perfomance:</u>

for an overview see:


absorber: sapphire-crystal: V= 3 x 3 mm² x 430 μm

<u>thermometer:</u> aluminium-film (d = 10 nm), $T_c \approx 1.5^{\circ}$ K (in the range of a ⁴He-cryostat)

(for impedance matching to the amplifier: ⇒ meander structure)

readout: conventional pulse electronics +Flash-ADC's +Digital Filtering

III. CLTD`s for High Resolution Detection of Heavy Ions- Design and Performance

cappinio oryotal: ν = ο x ο min x τοο μπι

thermometer: aluminium-film (d = 10 nm), $T_c \approx 1.5^{\circ}$ K (in the range of a ⁴He-cryostat) (for impedance matching to the amplifier: \Rightarrow meander structure)

readout: conventional pulse electronics +Flash-ADC's +Digital Filtering

CLTD's for High Resolution Detection of Heavy Ions - Design and Performance

detector pixel:

- absorber:
 - $3 \times 3 \times 0.43$ mm³ sapphire (Al₂O₃)
- thermometer:

<u>Transition Edge Sensor (TES)</u>

10 nm thick meander shaped Al-layer

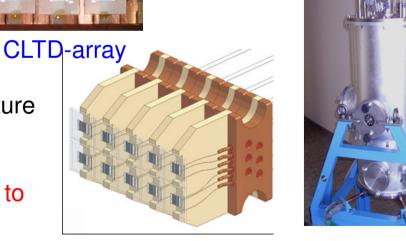
⇒ photolithography (high <u>purity!!)</u>

• operation temperature:

$$T_c = 1.5 - 1.6 \text{ K}$$

detector array:

- 8 pixels with individual temperature stabilization in operation
- active area: 12 mm x 6 mm
- windowless coupling of cryostat to beam line

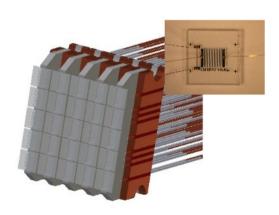


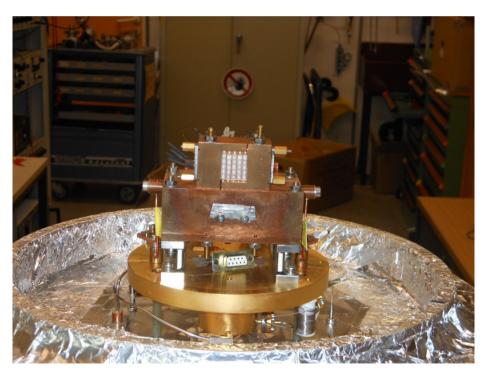
3 mm

absorber

aluminum thermometer

cryostat



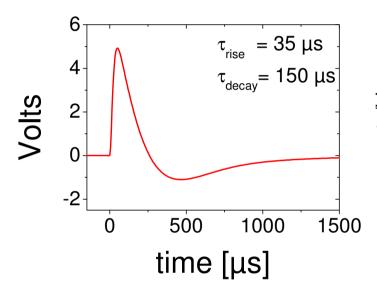


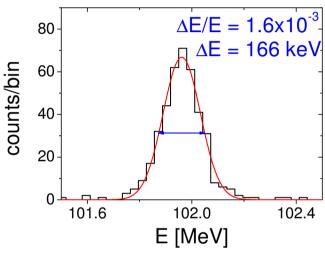
New Large Solid Angle Detector Array

number of pixels: 25

active area: 15 X 15 mm²

CLTD's for High Resolution Detection of Heavy Ions - Design and Performance


detector performance: response to ³²S ions @ 100 MeV


rate capability:

≥ 200 sec⁻¹

resolution:

 $\Delta E/E = 1.6 \times 10^{-3}$

systematical investigation of energy resolution:

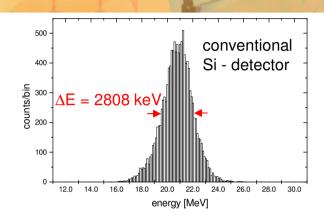
with UNILAC-beam: for ²⁰⁹Bi, E = 11.6 MeV/u $\Rightarrow \Delta E/E = 1.8 \times 10^{-3}$

with ESR-beam: for ²³⁸U, E = 360 MeV/u $\Rightarrow \Delta E/E = 1.1 \times 10^{-3}$

with Tandem-beam: for 152 Sm, E = 3.6 MeV/u $\Rightarrow \Delta E/E = 1.6 \times 10^{-3}$

⇒ for heavy ions: ≥ 20 x improvement over conventional Si detectors

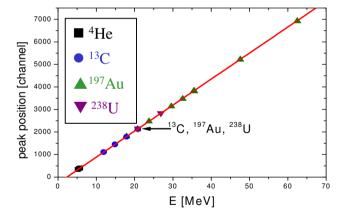
Comparison of Detector Performance: CLTD - Conventional Si Detector

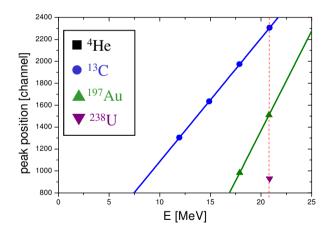

example:

²³⁸U @ 20.7 MeV)

S. Kraft-Bermuth et al.

Rev. Sci. Instr. 80 (2009) 103304


calorimetric detector $\Delta E = 91 \text{ keV}$ 800 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 energy [MeV]



energy linearity:

example:

¹³C, ¹⁹⁷Au, ²³⁸U

for conventional ionization detector:

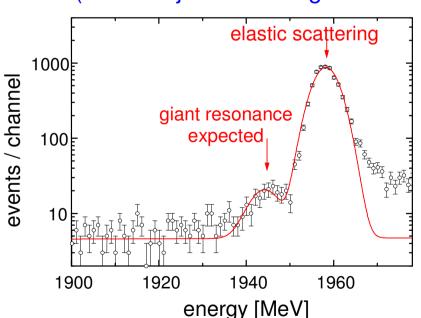
high ionization density leads to charge recombination (E- and Z- dependent)

- ⇒ pronounced pulse height defects ⇒ nonlinear energy response
- ⇒ fluctuation of energy loss processes ⇒ limited energy resolution

IV. Applications of CLTD`s in Heavy Ion Physics (NUSTAR)– Status and Perspectives

- High Resolution Nuclear Spectroscopy
- Investigation of Stopping Powers of Heavy Ions in Matter
- In-Flight Mass Identification of Heavy Ions
- Investigation of Z-Distribution Yields of Fission Fragments

Applications: a) High Resolution Nuclear Spectroscopy

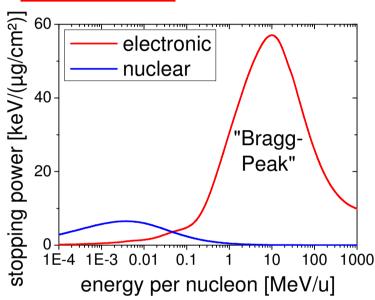

nuclear spectroscopy:

- elastic and inelastic scattering \Rightarrow separation of inelastic channels
- nuclear reactions
 identification of reaction channels

Example:

investigation of giant resonances (collective excitation of nuclear matter)

J. Meier et al. Nucl. Phys. A 626 (1997) 451c NatPb (20Ne, 20Ne'), E = 100 MeV/u (CLTD adjusted to range of Ne ions)


potential applications:

- ⇒ investigation of multi phonon giant resonances
- ⇒ reactions at low energies (LEB at FAIR)

Applications:

b) Investigation of Stopping Powers of Heavy Ions in Matter

motivation:

example: stopping power of ²³⁸U-ions in gold (SRIM-prediction)

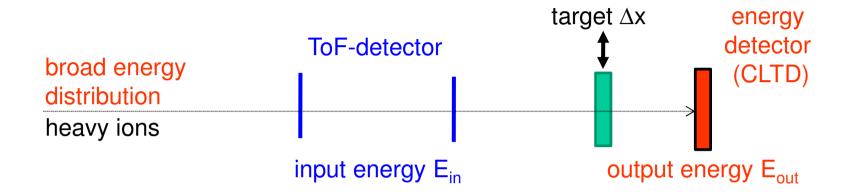
energy loss processes:

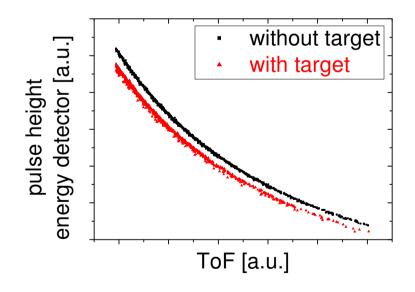
- electronic stopping power
 - = ionization of target atoms
- nuclear stopping power
 - = elastic scattering on target nuclei

important: theoretical understanding

- basic science:
 - interaction of energetic particles with matter
- applied science:
 - material science
 - > investigation of radiation damage
 - ➤ medicine → tumor therapy
 - **>** ...

problem:


accuracy of theoretical models unsatisfactory

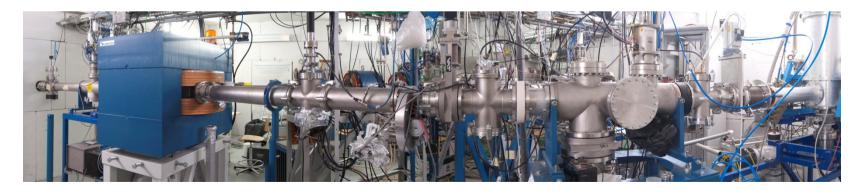

- ⇒ predictions by semi-empirical computer codes
 - use best fits on experimental data (example: SRIM)
- ⇒ many data needed for different kind of
 - > targets, projectiles, energies

in particular:

data for very slow and very heavy ions are still scarce

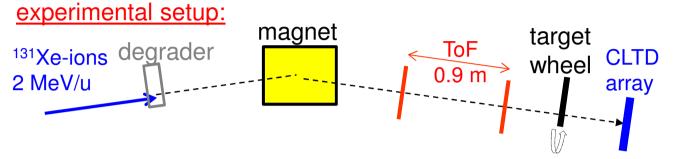
The TOF – CLTD Spectrometer - A New Experimental Method for dE/dx Measurements

as compared to previous measurements with conventional energy detector (for example: Trzaska et al., Zhang et al.):

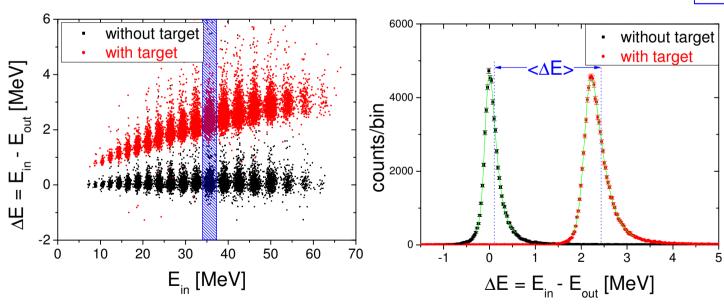

- ⇒ by use of CLTD's as energy detector:
 - improved energy resolution
 - \rightarrow higher sensitivity
 - improved energy linearity (no pulse height defect)
 - → reduced energy calibration errors

Stopping Power Measurements at GSI and JYFL

UNILAC accelerator (GSI, Darmstadt)
0.1 – 1.4 MeV/u ²³⁸U ions in C-und Au-targets

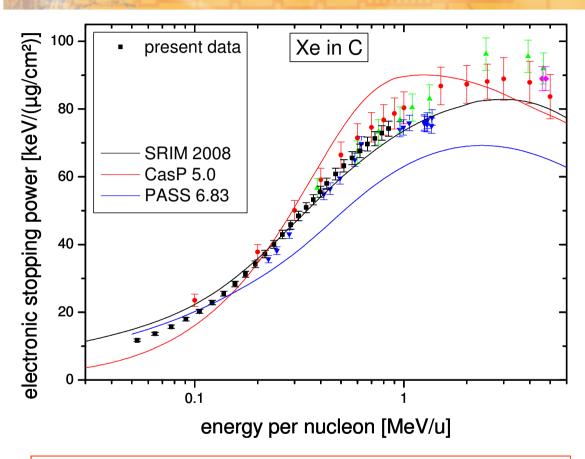


K-130 cyclotron (JYFL, Jyväskylä)
0.05 – 1 MeV/u ¹³¹Xe ions in C-, Ni- und Au-targets



Results on Stopping Powers for ¹³¹Xe-Ions in C, Ni and Au

measurements JYFL Jyväskylä in cooperation with H. Kettunen, W. Trazka et al.



target thickness Δx determined by weighting + energy loss of α -particles \rightarrow high accuracy

example: ¹³¹Xe in 53 μg/cm² carbon

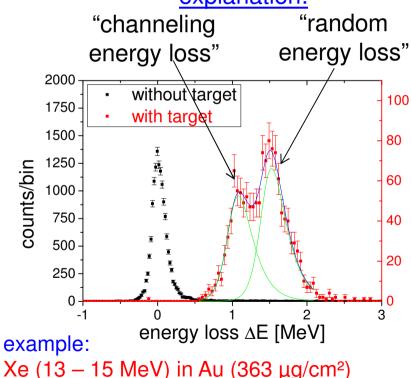
Results on Stopping Powers: 0.05 – 1.0 MeV/u ¹³¹Xe-Ions in C

reference data taken from online database of H. Paul: http://www.exphys.jku.at/stopping/

 substantial deviations from SRIM-predictions (semiempirical calculations)

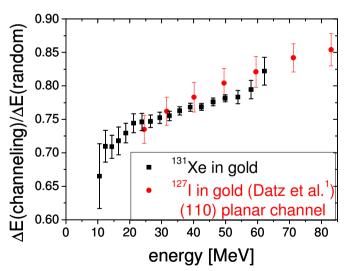
experimental uncertainties:

- detector-cal.: <1 %
- target foils: 3 %
- statistics: <0.5 %(lowest energies: <2 %)
- total: 3 4 % (improvement of factor 2-3)
- > agreement with Geissel et al.
- deviations from data from Trzaska et al. and Pape et al.
- data extended to lower energies


A. Echler, PHD thesis 2013 and A. Echler et al. J. Low Temp. Phys. 176 (2014) 1033

Stopping Power Measurements - Effect of Channeling: Xe in Au

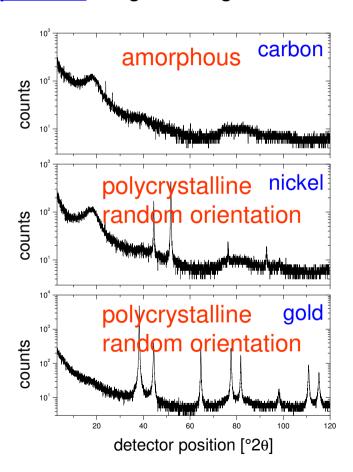
for thin Ni- and Au-targets:


→ double-peak structure in measured energy loss

explanation:

A. Echler, PHD thesis 2013 and

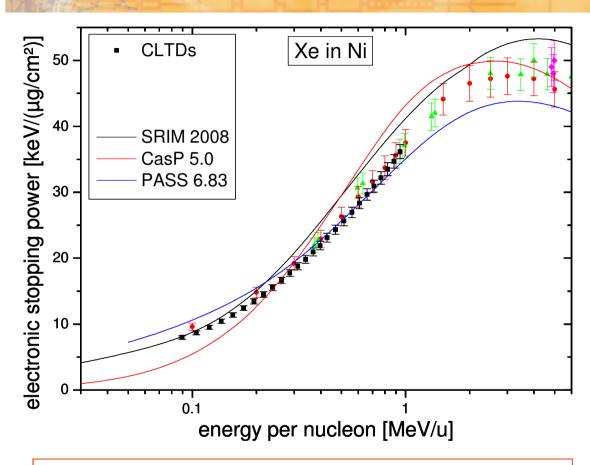
A. Echler et al., Nucl. Phys. B (2016) to be published



¹⁾Datz et al., Nucl. Inst. Meth., 38 (1965) 221

- ⇒ new data on channeling energy loss obtained
- ⇒ source of systematic error identified and eliminated

X-Ray Diffraction Analysis of the Absorber Foils


Is the interpretation of the data correct? channeling appears only in crystalline absorbers! problem: targets not grown as single crystals

the X-ray analysis confirms polycrystalline structure in Ni and Au foils

the channeling effect is enhanced due to much stronger multiple scattering for random energy loss

Results on Stopping Powers: 0.09 – 1.0 MeV/u ¹³¹Xe-Ions in Ni (only Random Energy Loss)

reference data taken from online database of H. Paul: http://www.exphys.jku.at/stopping/

experimental uncertainties:

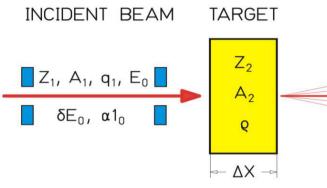
- detectorcal.: <1 %
- target foils: 3 %
- statistics: <1 % (lowest energies: <2 %)
- total: 3 4 %
- substantial deviations from SRIM-predictions
- > agreement with Geissel et al.
- deviations from data of Trzaska et al. for low energies

Perspectives for further Applications

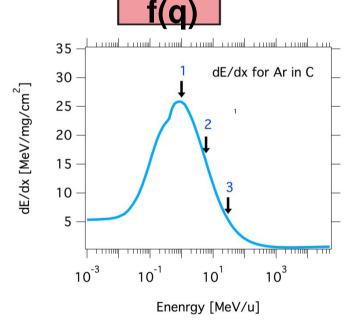
Investigation of Heavy Ion Channeling in Single Crystals
 (A. Bräuning- Demian et al., C. Trautmann et al.)

 Investigation of Charge Exchange Energy Straggling (proposed by H. Geissel et al.)

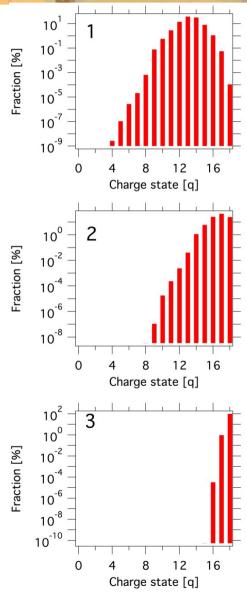
Role of Charge Exchange Energy Straggling in Solids S. Purushothaman, P. Egelhof. H. Geissel et al.


DETECTOR SYSTEM

ΔΕ


δE

 $\alpha_{1/2}$


transparency from H. Geissel

- Measure energy-loss distribution at different energy domains in solids (broad f(q) up to q=Z1)
- 2. Target homogeneity better than 10⁻³
- Energy measurements better than 10⁻³ independent on the quality of the incident beam.
- Cryogenic Calorimeter,
- Dispersion-Matched Spectrometer

$$(\delta E)^2 = (\delta E)_{coll}^2 + (\delta E)_{charge}^2$$

Applications:

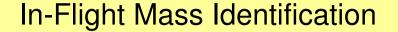
c) In-Flight Mass Identification of Heavy Ions

important for many applications: isotope mass identification

standard method:

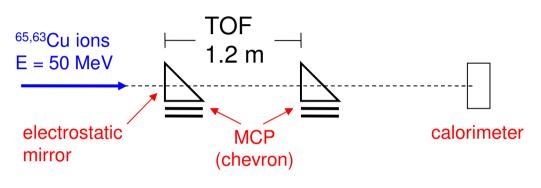
$$\begin{array}{ccc}
 \mathsf{B} \bullet \rho & \Rightarrow p \\
 \mathsf{TOF} & \Rightarrow v
 \end{array}
 \qquad
 \begin{array}{ccc}
 \mathsf{m} & = \frac{p}{v}
 \end{array}$$

alternative method:

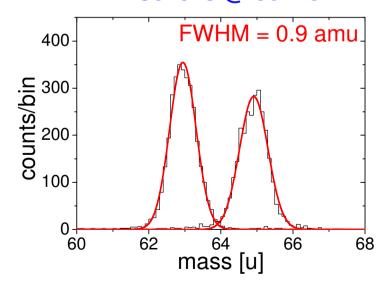

$$\left. \begin{array}{ccc} \text{energy} & \Rightarrow \mathsf{E} \\ \mathsf{TOF} & \Rightarrow \mathsf{v} \end{array} \right\} \quad m \, = \frac{2E}{\mathsf{v}^2}$$

disadvantage:

- needs big magnet spectrometer
- small solid angle
- charge state ambiguity because of B $\rho = p/Q$ (especially for slow heavy ions!)
- small dynamic range


$$\left(\frac{\Delta m}{m}\right)^2 = \left(\frac{\Delta E}{E}\right)^2 + \left(2\frac{\Delta t}{t}\right)^2$$

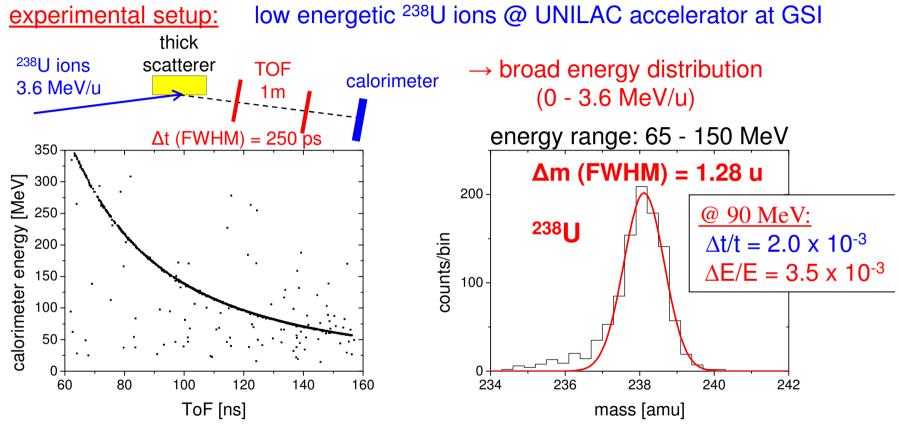
for conventional setups: mass resolution is limited by energy resolution! ⇒ calorimetric detectors


measured at Tandem accelerator at MPI in Heidelberg

$$\begin{array}{cc} \text{energy} & \Rightarrow \mathsf{E} \\ \mathsf{TOF} & \Rightarrow \mathsf{V} \end{array} \right\} - \mathbf{m} = \frac{2\mathsf{E}}{\mathsf{V}^2}$$

$$\left(\frac{\Delta m}{m}\right)^2 = \left(\frac{\Delta E}{E}\right)^2 + \left(2\frac{\Delta t}{t}\right)^2$$

63,65Cu ions @ 50 MeV


$$\Delta t = 680 \text{ ps}$$

$$\Delta E = 330 \text{ keV}$$

limitation in this experiment: TOF measurement!

A. Echler PHD Thesis 2013

In-Flight Mass Identification: Results for ²³⁸U-lons

➤ not reachable with conventional E-ToF system

>advantage to Bp-ToF method: ■ high dynamic range

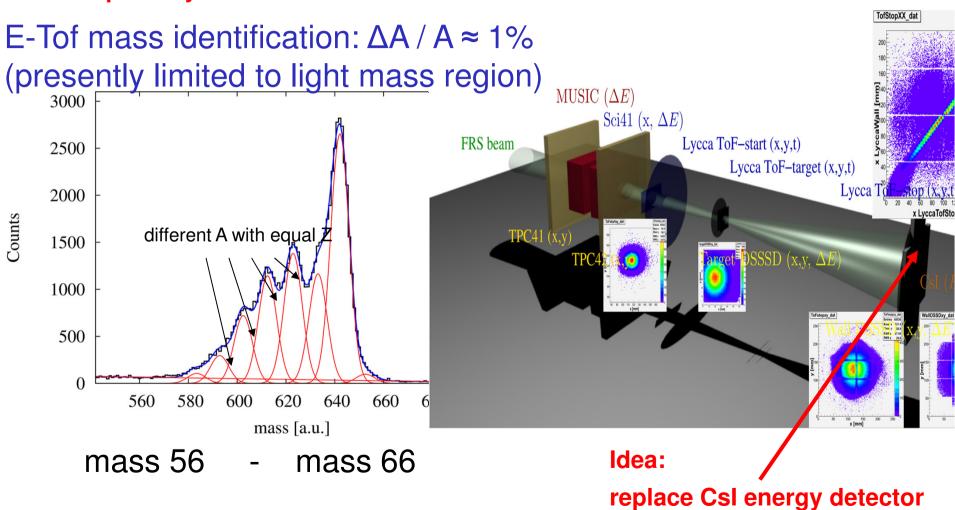
not affected by charge state ambiguities

A. Echler, PHD Thesis 2013

Perspectives for Applications

In-Flight Mass Identification for:

- identification of reaction products from <u>reactions with radioactive beams</u> (for slow heavy ions: no charge state ambiguities, high dynamic range)
 - ⇒ potential application at NUSTAR@FAIR: LEB
 - ⇒ investigation of deep inelastic transfer reactions (proposed by S. Heinz)
- identification of isotopes after <u>in-flight gamma spectroscopy</u>
 - ⇒ potential application at NUSTAR@FAIR: HISPEC (LYCCA)
- <u>identification of superheavy elements</u> (for $Z \ge 113$: decay chain does not feed a known α -chain): $\Delta m \le 1$ for m = 300 reachable
- identification of rare isotopes in <u>accelerator mass spectrometry</u>
 - ⇒ high sensitivity


first experiment performed: trace analysis of 236U at the VERA facility at Vienna:

S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304

LYCCA Performance

transparency from J. Gerl

by a CLTD

Perspectives for Applications

In-Flight Mass Identification for:

- identification of reaction products from <u>reactions with radioactive beams</u> (for slow heavy ions: no charge state ambiguities, high dynamic range)
 - ⇒ potential application at NUSTAR@FAIR: LEB
 - ⇒ investigation of deep inelastic transfer reactions (proposed by S. Heinz)
- identification of isotopes after <u>in-flight gamma spectroscopy</u>
 - ⇒ potential application at NUSTAR@FAIR: HISPEC (LYCCA)
- <u>identification of superheavy elements</u> (for $Z \ge 113$: decay chain does not feed a known α -chain): $\Delta m \le 1$ for m = 300 reachable
- identification of rare isotopes in <u>accelerator mass spectrometry</u>
 - ⇒ high sensitivity

first experiment performed: trace analysis of 236U at the VERA facility at Vienna:

S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304

Application for Identification of Superheavy Elements

for $Z \ge 112$: decay chains do not feed a known α -chain \Rightarrow mass identification of the superheavy nucleus required

$$\left(\frac{\Delta m}{m}\right)^2 = 2\left(\frac{\Delta v}{v}\right)^2 + \left(\frac{\Delta E}{E}\right)^2$$

ultrathin ¹²C-foils + channelplates

$$\frac{\Delta v}{v} \le 1 \cdot 10^{-3}$$

(energy straggling in ¹²C-foils negligible!)

calorimetric detector:

$$\frac{\Delta E}{E} \approx 2 - 3 \cdot 10^{-3}$$

(semiconductor detector: $\Delta E/E \ge 5 \cdot 10^{-2}$)

$$\frac{\Delta m}{m} \le 3 \cdot 10^{-3}$$

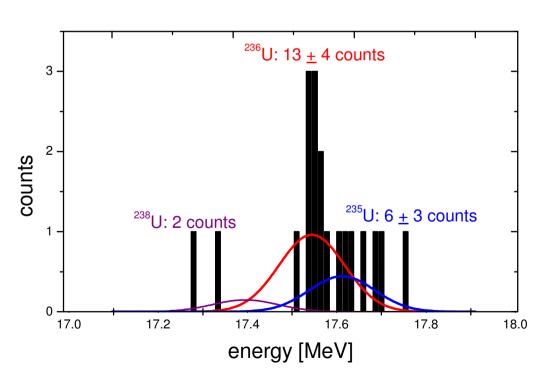
for m = $300 \Rightarrow \Delta m \leq 1$ amu

Perspectives for Applications

In-Flight Mass Identification for:

- identification of reaction products from <u>reactions with radioactive beams</u> (for slow heavy ions: no charge state ambiguities, high dynamic range)
 - ⇒ potential application at NUSTAR@FAIR: LEB
 - ⇒ investigation of deep inelastic transfer reactions (proposed by S. Heinz)
- identification of isotopes after <u>in-flight gamma spectroscopy</u>
 - ⇒ potential application at NUSTAR@FAIR: HISPEC (LYCCA)
- <u>identification of superheavy elements</u> (for $Z \ge 113$: decay chain does not feed a known α -chain): $\Delta m \le 1$ for m = 300 reachable
- identification of rare isotopes in <u>accelerator mass spectrometry</u>
 - ⇒ high sensitivity

first experiment performed: trace analysis of 236U at the VERA facility at Vienna:


S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304

Application of CLTD's in Accelerator Mass Spectrometry (AMS)

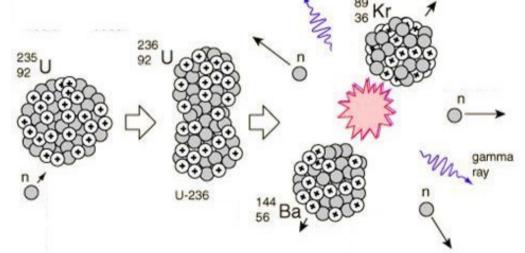
application for Accelerator Mass Spectrometry:

(in collaboration with: R. Golser, W. Kutschera et al., VERA facility, Vienna)

<u>aim:</u> determination of very small isotope ratios ²³⁶U/²³⁸U in natural uranium samples ⇒ ²³⁶U known as monitor for flux of thermal neutrons (for example: investigation of Natural Reactors in Uranium Mines)

results:

substantial improvement in background discrimination and detection efficiency


⇒ level of sensitivity improved by one order of magnitude:

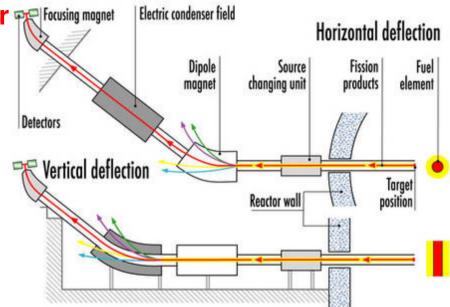
236
U/ 238 U = 7 x 10⁻¹²

S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304

Applications:

- d) Investigation of Z-Distribution Yields of Fission Fragments
- fission of ²³⁵U induced by thermal neutrons:
 - ⇒ capture of a thermal neutron
 - \Rightarrow binary scission
 - ⇒ about 85% (~170 MeV) of the energy released is transferred to the kinetic energy of the fragments

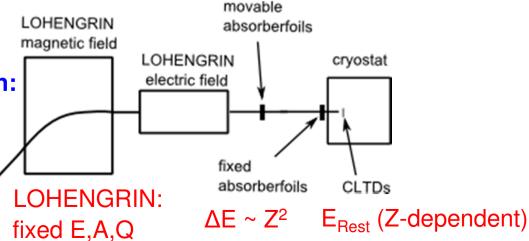
- motivation for studying properties of fission fragments:
 - ⇒ better understanding of the nuclear fission process
 - ⇒ test of theoretical predictions
 - ⇒ information about nuclear structure (shell effects, excited states, ...)
 - ⇒ data relevant for reactor physics (for example for Fukushima Accident)


Idea of the Experiment: Investigation of Z (nuclear charge) Distributions of Fission Fragments

- produce fission fragments by n \rightarrow ²³⁵U at the high flux research reactor of the ILL Grenoble
- select mass and energy in the LOHENGRIN mass seperator
- identify Z by using the Z-dependent energy loss in an energy degrader (absorber method, see also U. Quade et al., NIM A164 (1979) 436
 U. Quade et al., Nucl. Phys. A487 (1988),1
- measure E_{rest} in a high resolving CLTD (instead of conventional ionization chamber)

Idea of the Experiment: Investigation of Z (nuclear charge) Distributions of Fission Fragments

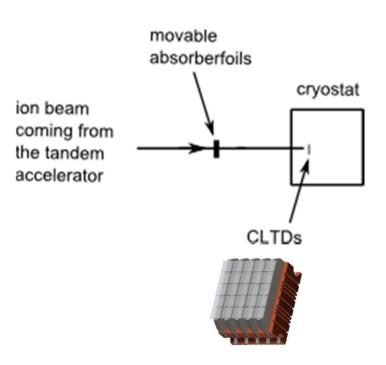
The LOHENGRIN Mass Separator Focusing magnet


- production of fission products by $n \rightarrow {}^{235}U$
- separation according to A/Q (magnetic field) and E/Q (electric field)
- but no Z –selectivity!!

Z - Identification via the Absorber Method

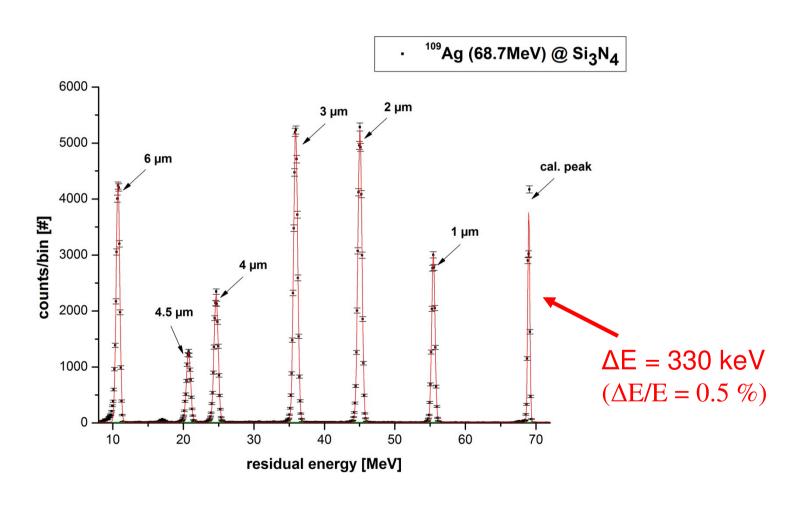
Quality of Z – Separation depends on:

- proper choice of ΔE (absorber foil)
- homogenity of absorber foil
- energy resolution of CLTD`s

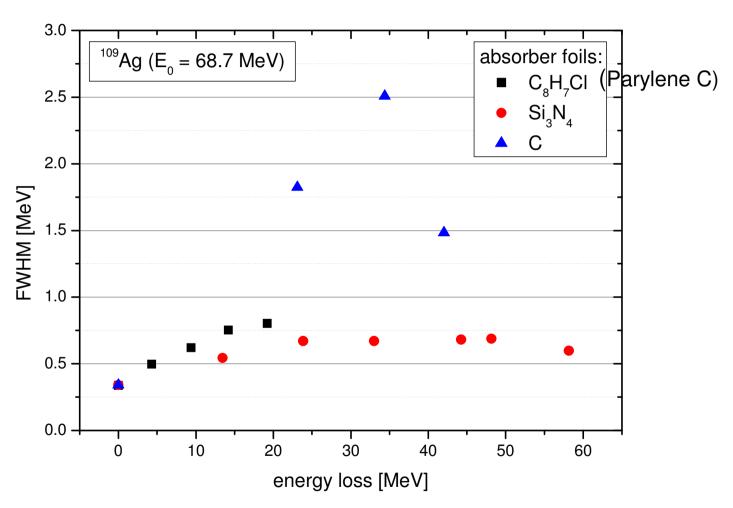


Feasibility Studies at the Munich Tandem Accelerator

from the Tandem Accelerator:

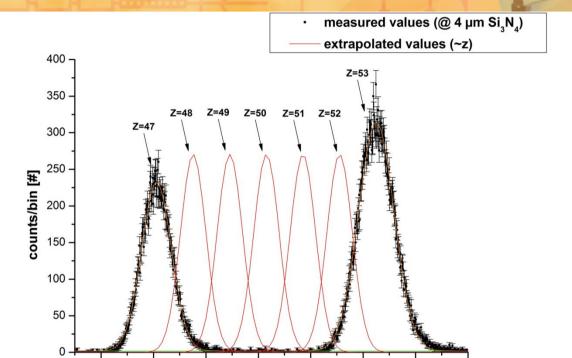

 \Rightarrow stable beams of ¹⁰⁹Ag (E = 80 MeV) and ¹²⁷I (E = 68.7 MeV) (at same velocity)

- aim of the experiment:
 - ⇒ first test of the new 25 pixel array
 - ⇒ check of quality of Z separation dependent on:
 - type of absorber foil
 - thickness of absorber foil
 - homogenity of absorber foil
 - amount of energy straggling



- 25 pixel CLTD array
- individual temperature stabilization
- active area ~ (15x15)mm²

Energy Loss of ¹⁰⁹Ag in Si₃N₄ for different Thickness of the Absorber Foil



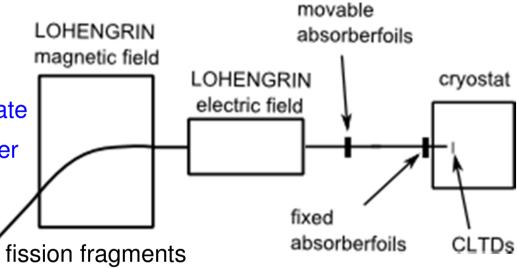
FWHM for different Types of Absorber Foils

best performance found for Si₃N₄ as compared to previously used Parylene C

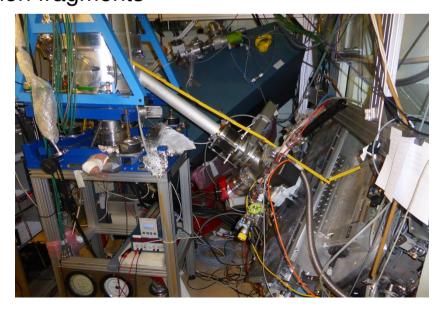
Expected Z - Separation

energy loss [MeV]

results:


- new 25 pixel array works well
- Si3N4 is the best choice for absorber foil
- expected separation sufficient for d ≥ 4 μm

Investigation of Fission Fragments at the Research Reactor of ILL Grenoble


Experimental Setup:

after LOHENGRIN:
 well defined mass, energy, charge state

Z – dependent energy loss in absorber

Results: Mass 92

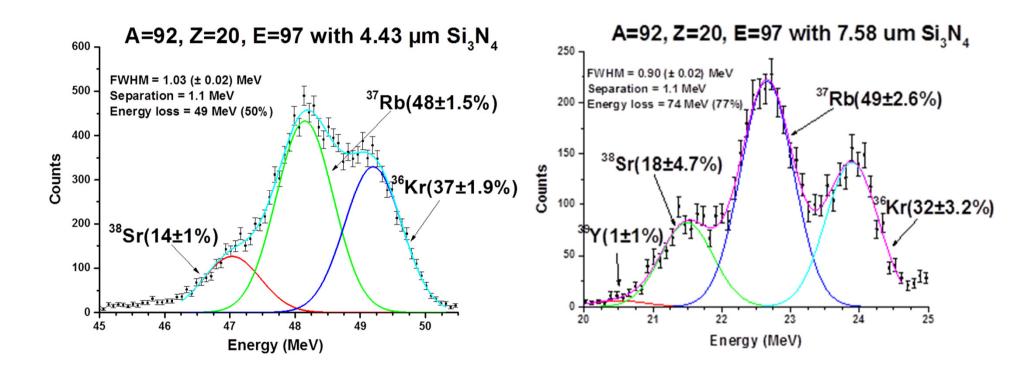
Motivation:

PHYSICAL REVIEW C 91, 011301(R) (2015)

Nuclear structure insights into reactor antineutrino spectra

A. A. Sonzogni, T. D. Johnson, and E. A. McCutchan

National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA


(Received 8 August 2014; revised manuscript received 25 November 2014; published 8 January 2015)

Antineutrino spectra following the neutron induced fission of ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu are calculated using the summation approach. While each system involves the decay of more than 800 fission products, the energy region of the spectra most relevant to neutrino oscillations and the reactor antineutrino anomaly is dominated by fewer than 20 nuclei, for which we provide a priority list to drive new measurements. The very-high-energy portion of the spectrum is mainly due to the decay of just two nuclides, ⁹²Rb and ⁹⁶Y. The integral of the signal measured by antineutrino experiments is found to have a dependence on the mass and proton numbers of the fissioning system. In addition, we observe that ~70% of the signal originates from the light fission fragment group and about 50% from the decay of odd-Z, odd-N nuclides.

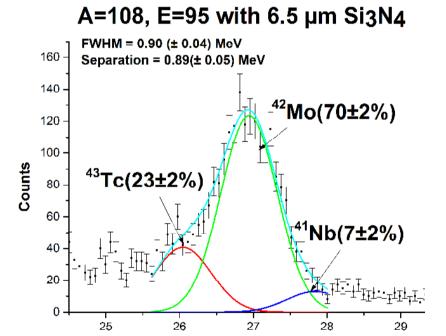
The ⁹²Rb cumulative fission yield following the thermal fission of ²³⁵U definitely merits a new measurement. While

Results: Mass 92

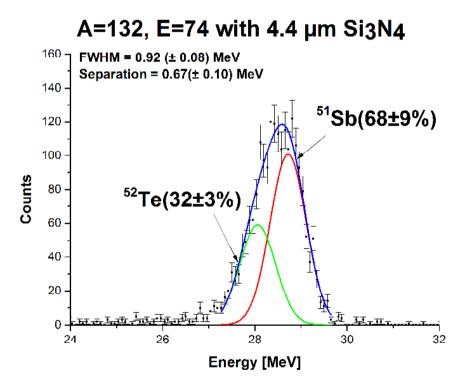
Results: Mass 92

for an accurate determination of the 92Rb yield:

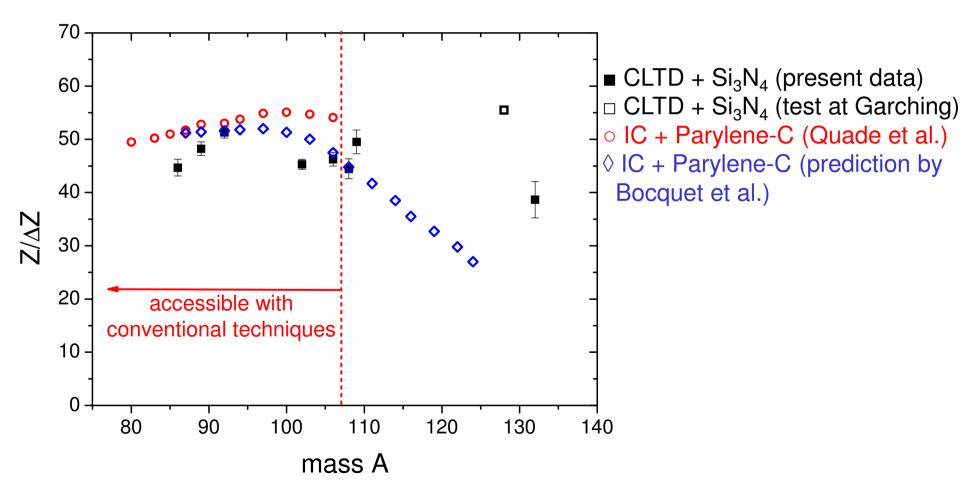
- ⇒ take into account dependence on energy and charge state
- ⇒ many systematic measurements needed


Charge State, Q

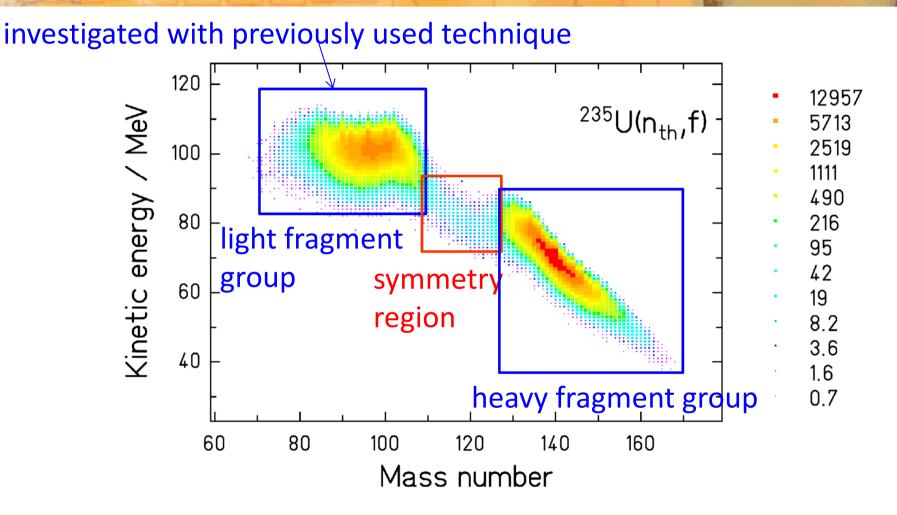
(\alpha =	Q <i>→</i> E↓	17	19	20	21	25
(MeV)	77	✓	√	√	√	√
ш	84	√		\checkmark	√	
rgy,	92	✓	√	√	√	✓
Ene	97	√	√	√	√	\checkmark
ш	102		√	✓	√	✓


data analysis in progress

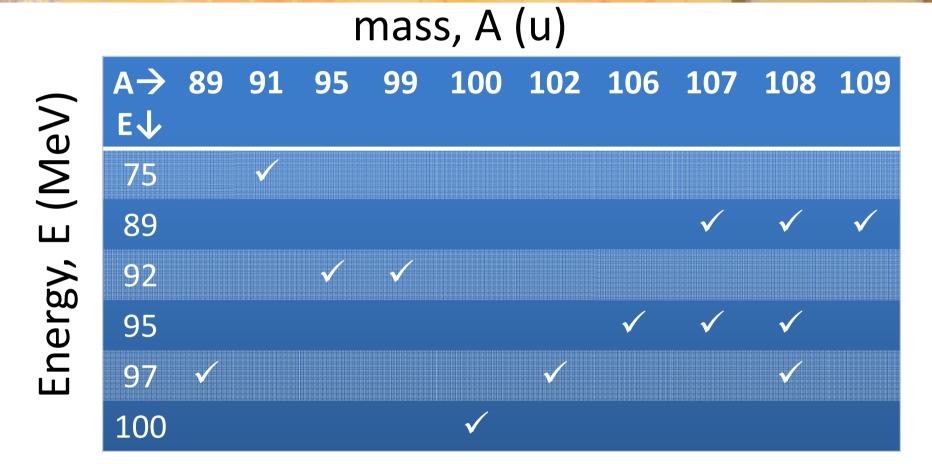
Results: Heavier Mass Region



Energy [MeV]



Quality of Z-Separation dependent on Nuclear Mass



Intensity Distribution of Fission Fragments

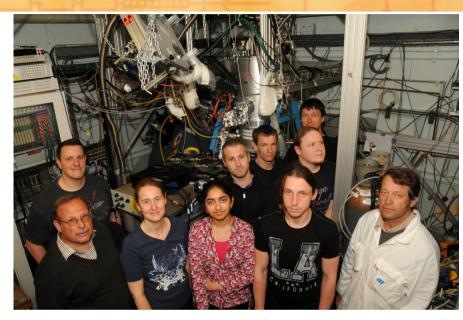
K.H. Schmidt et al., JEFF Report 24 (2014)

Results: Heavier Mass Region towards the Symmetry

of particular interest: odd-even staggering in the region towards symmetry

⇒ needed for a better understanding of the fission process data analysis is in progress

Results: Heavier Mass Region


up to date unexplored region (data analysis in progress)

Perspectives for Future Investigations

- improve the detection efficiency (absorber foils directly in front of the CLTD's, inside the cryostat)
- improve flexibility (moveable absorber foils of different thickness)
- investigate the (low intensity) symmetry region of fission fragments which is
 of high interest (odd-even effect provides sensitive test of fission models)
- investigate yields for ⁹⁶Y (important for the understanding of antineutrino spectra), proposal of H. O. Denschlag et al.

Collaboration

- Patrick Grabitz^{1,2}, Victor Andrianov³ Shawn Bishop⁴, Aurelin Blanc⁶, Santwana Dubey^{1,2}, Artur Echler^{1,2,3}, Peter Egelhof^{1,2}, Herbert Faust⁶, Friedrich Gönnenwein⁵, Jose Gomez⁴, Ulli Köster⁶, Saskia Kraft-Bermuth³, Manfred Mutterer⁵, Pascal Scholz³, S. Stolte²
- ¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- ²Johannes Gutenberg Universität, Mainz, Germany
- ³Justus-Liebig-Universität, Gießen, Germany
- ⁴Technische Universität München, Germany
- ⁵Universität Tübingen, Germany
- ⁶Institut Laue-Langevin, Grenoble, France

V. Conclusions

- CLTD's have substantial advantage over conventional detection systems concerning resolution, linearity, etc.
- CLTD's for Heavy Ion Physics have been designed and used successfully for experiments
- the results on Z-distributions of fission fragments are expected to provide important information for nuclear structure-, reactor- and neutrino physics
- CLTD's were also applied successfully in AMS, stopping power measurements, in-flight mass determination and Lambshift measurements, and have the potential for many further applications, as for example for SHE research