Observation of New Transuranium Isotopes in Multinucleon Transfer Reactions

Sophie Heinz

GSI Helmholtzzentrum and Justus-Liebig-Universität Gießen

Nustar annual meeting, February 29 – March 4, 2016

Fusion, Fragmentation and Fission

Chart: H. Geissel et al., "Exotic Nuclear Beam Facilities", vol. 1. Wiley, 2014.

Deep Inelastic Transfer Reactions

The small cross-sections require separation + single event detection

The Velocity Filter SHIP at GSI

Separation and identification of heavy reaction products at SHIP

The Velocity Fifter SHIP at CS

Transfer Products from ⁴⁸Ca + ²⁴⁸Cm

Theoretical model calculations for DIT in ⁴⁸Ca + ²⁴⁸Cm

 \rightarrow V. Zagrebaev and W. Greiner

 $E_{cm} = 210 \text{ MeV} (= 1.05 \text{ V}_{CB})$

New Transuranium Isotopes Observed in DIT

Experiment at SHIP: ${}^{48}Ca + {}^{248}Cm$, $E_{cm} = 212 \text{ MeV}$

H.M. Devaraja et al., Phys. Lett. B 748, 199 (2015).

Some of the New Decay Chains

Isotopic Distributions / Cross-sections

• 1-event cross-section limit: 10 pb / sr $\rightarrow \sigma_{tot} \sim$ 1.9 nb with $\epsilon_{SHIP} = 0.5$ %

- Cross-sections up to ~50 µb were observed for DIT products \rightarrow 250 events / s
- Isotopes far from the target were populated with large yields

Energy Dissipation and Excitation Energies

- TKE: total kinetic energy \rightarrow calculated from velocity of target-like DIT product
- TKE $\leq E_{viola} \rightarrow$ reflects deep inelastic process
- $E^* \sim 60 \text{ MeV}$ für $Z = 86 92 \rightarrow E^* \sim 45 \text{ MeV}$ for target-like DIT product
- Evaporation of 4 5 neutrons

Comparison of DIT and Fusion Reactions

\rightarrow for **uranium** isotopes

- Cross-sections similar within error bars
- DIT: population of vast region of nuclei in the same experiment
- Fusion: kinematics more favorable concerning separation criteria

Summary and Outlook

- ► DIT reactions are presently discussed as a means to produce new isotopes in the region of superheavy nuclei and N ≈ 126 nuclei
- ▶ In DIT reactions at SHIP we observed new transuranium nuclei $\rightarrow \sigma_{1 \text{ event}} \sim 10 \text{ pb}$ / sr
- In DIT reactions a vast region of nuclei can be populated in the same experiment
- Are DIT reactions suitable / favourable for the production of heavy nuclei?
 - Z > 92, N \approx 126 \rightarrow DIT appears favourable
 - Z < 82, N ≈ 126 → Fragmentation appears favourable (O. Beliuskina et al., Eur. Phys. J. A 50, 161 (2014))
 - N-rich SHN \rightarrow DIT very difficult: tiny σ and missing ID methods

DIT for the N ≈ 126, Z < 82 region?

DIT in ⁶⁴Ni + ²⁰⁷Pb

Transfer and fragmentation cross-sections

O. Beliuskina et al., Eur. Phys. J. A 50, 161 (2014).
[1] W. Krolas et al., Nucl. Phys. A 724 (2003) 289.

DIT for the N ≈ 126, Z < 82 region?

Transfer and Fragmentation yields (at the target)

	N _{beam}	d _{Target}	efficiency
Transfer	5 · 10 ¹² / s	500 µg / cm²	< 5% (SHIP)
Fragmentation	5 · 10 ⁹ / s	5 g / cm²	< 50% (FRS)

yield (Fragmentation) > 10 x yield (Transfer)