

Diagnostics with undulator radiation

Sara Casalbuoni

ANKA, Karlsruhe Institute of Technology, Karlsruhe, Germany

ANKA

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

- Undulator radiation
- Diagnostics examples
 - Emittance
 - Energy spread
 - Momentum compaction
- Conclusions

ANKA Synchrotron Radiation Facility

Undulator

Undulators are periodic structures made by sequences of dipole magnets and are used in synchrotron light sources to increase the flux produced in a narrow cone

http://www.esrf.eu/Accelerators/news/art-undulator

ANKA Synchrotron Radiation Facility

Undulator radiation

The constructive interference of the radiation emitted at each pole gives rise to flux peaks at certain photon energies in the undulator spectrum: this can be used to qualify the undulator field quality as well as electron beam characteristics as emittance and energy spread.

$$\lambda = \frac{\lambda_U}{2 n \gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \qquad \qquad K = \frac{e}{2\pi mc} B_0 \ \lambda_U = 0.9336 \ B_0[T] \ \lambda_U[cm]$$
MAXIV parameters

Flux (10 ¹³ ph/s/0.1%)	$\varepsilon_{x,y} = 0$ $n = 1$ $n = 1$	nm rad; $\Delta E/E = 0$ deal magn. field vlagn. field $\Delta \phi = 5.5$ = 3 n = 5	Elux (10,30) Bhy/s/0.1% Bhy/s/0.1	n = 11 42.2 42.3 42.4 42.5 Energy (keV)	
₀ L	10	20 Enerc	30 30 (keV)	40	 50

Flux through a slit 50 um x 50 um at 10 m

E (Gev)	3
I (A)	0.5
Δ Ε/Ε	0.001
ε _x (nm rad)	0.26
ϵ_{y} (nm rad)	0.008
$\beta_{\rm x}$ (m)	9
β _y (m)	4.8
$\eta_{\rm x}$ (m)	0
λ _υ (mm)	15
B _{max} (T)	0.7
# full periods	102

Spectrum dependence on ϵ and $\Delta E/E$

§T. Tanaka and H. Kitamura, J. Synchrotron Rad. 8, 1221 (2001)

ANKA Synchrotron Radiation Facility

ΔΝΚ

Spectrum sensitivity to ϵ

Increasing ε_y by a factor of 2 there is no change in the spectrum. Increasing ε_x by a factor of 2 the peaks decrease by about 20%.

Spectrum sensitivity to ε : harmonic flux ratio

ANKA Synchrotron Radiation Facility

Spectrum sensitivity to $\Delta E/E$

Increasing $\Delta E/E$ by a factor of 2 there is 20% change in the height of the 1st harm. and about 50% in the height of the 11th.

The higher harmonics are very sensitive to $\Delta E/E$ changes: 20% change in $\Delta E/E$ corresponds at the 11% harm. in a similar change in the peak height.

Spectrum sensitivity to $\Delta E/E$: line width

Sara Casalbuoni, Beam Dynamics meets diagnostics 4-6 November 2015, Florence, Italy

ANK

Coupling constant =0.03

Harmonic spatial distribution

Karlsruhe Institute of Technology

Examples

- Storage rings (SR): ESRF, APS
- Laser wakefield accelerator

SR: Emittance measurements

$$\epsilon = \frac{\Sigma_l^2 - \sigma_{\rm scr}^2 - {\sigma_{\rm und}'}^2 l^2}{\beta + l^2/\beta} \qquad \sigma_{\rm und}' = \sqrt{\frac{\lambda}{2L^2}}$$

a) b 1

FIG. 2. Three different images of ID6 beam corresponding to different values of the emittance (on the left-hand side) and the fitted images (on the right-hand side). (a) $\epsilon_x = 10.6$ nm, $\epsilon_z = 1.3$ nm; (b) $\epsilon_x = 4.3$ nm, $\epsilon_z = 0.55$ nm; (c) $\epsilon_x = 10.3$ nm, $\epsilon_z = 0.2$ nm.

ANKA

Estimated error on $\varepsilon \sim 20\%$ uncertainties in β functions and image quality (screen finite resolution ~30 µm)

E. Tarazona and P. Elleaume, Rev. Sci. Instr. 1974-1977 66 (1995)

ESRF

C)

SR: Energy and energy spread measurements

FIG. 1. Schematic of the electron average energy and energy spread measurement setups.

E. Tarazona and P. Elleaume, Rev. Sci. Instr. 67, 3368 (1995)

ANKA Synchrotron Radiation Facility

ANK

SR: Energy and energy spread measurements

Adjusting the magnetic gap, one makes the 3rd harmonic of the undulator coincide with the energy selected by the crystal

$$\lambda_{n} = \frac{1 + K^{2}/2}{2n(E/E_{0})^{2}}\lambda_{u} \qquad \qquad \frac{dE}{E} = \frac{dK}{K}\frac{K^{2}}{2 + K^{2}} < 0.1\%$$

Error on λ_n ~ 0.0001, minimized when θ ~90° (Bragg law) Error on K ~ 0.01

E. Tarazona and P. Elleaume, Rev. Sci. Instr. 67, 3368 (1995)

SR: Energy and energy spread measurements

FIG. 2. Influence of the electron beam characteristics on the shape of the seventh harmonic. The case of a filament beam without energy spread is shown on the right curve (right and upper axes). The electron beam size and divergence are taken into account through the parameters Σ_X and Σ_Z which are the horizontal and vertical sizes of the electron beam projected onto the slits. The effects of non-zero Σ_X , Σ_Z (ie of a finite emittance beam) and energy spread are shown on the left curves.

E. Tarazona and P. Elleaume, Rev. Sci. Instr. 67, 3368 (1995)

FIG. 4. Seventh harmonic profile recorded at a constant energy by varying the undulator gap. The energy spread deduced from Σ_X , Σ_Z and R is 1.1×10^{-3} .

ANKA Synchrotron Radiation Facility

SR: Momentum compaction factor

FIGURE 3. Schematic of the spectrum measurement of angle-integrated flux. The monochromator crystal uses Laue reflection with a Bragg angle θ , and the detector is located on a second rotary stage following 2 θ .

(Circles) experimental measurements; and (Solid line) calculated value with electron energy spread

FIGURE 5. Energy centroid change as a function of rf frequency change. The slope of this curve gives the momentum compaction of the APS storage ring, 2.27×10^4 , compared with the simulation result of 2.285×10^4 .

ANKA

B. Yang, M. Borland and L. Emery, Beam Instrumentation Workshop 2000

Sara Casalbuoni, Beam Dynamics meets diagnostics 4-6 November 2015, Florence, Italy

assumed to be 0.93 x 10^{-3} .

LWFA: Emittance and energy spread

ANKA Synchrotron Radiation Facility

LWFA: Emittance and energy spread

M.S. Bakeman et al, FLS 2010

ANKA

Conclusions

- Low emittance storage rings, free electron lasers and energy recovery linacs are designed to optimize the performance of the photons emitted by undulators
- Undulator radiation is a powerful diagnostic tool to measure emittance, energy spread and momentum compaction factor

Thanks to EUCARD² for providing the opportunity to attend this workshop

