β -beating Focusing on techniques using turn-by-turn BPM data

R. Tomás Thanks to M. Aiba, M. Carlá, A. Franchi, A. Garcia, U. Iriso, A. Langner, E. Maclean, L. Malina, T. Persson and P. Skowronski

Beam dynamics meets diagnostics 2015

November 4, 2015

- ★ Techniques and historical overview
- ★ Hadron accelerators and colliders
- ★ HL-LHC challenge
- ★ Light sources

Overview of optics measurements

	\frown	Observable	Analysis	Parameter	Depends on
	Betatron			ϕ	-
- -	oscillation,	centroid		eta from ϕ	М
	free or	position	Fit,	β from ampl.	C & M
	forced	T-b-T	F T,	Action	C & M
			SVD	Coupling	C
tio	+ RF freq			$D_x/\sqrt{\beta_x}$	М
Excita				Chrom. coupling	-
	+ RF phase			Q'	-
	Orbit		ϕ , β fit	ϕ , β	С
	correctors	Orbit	Model fit	any parameter	C & M
			Fit	Arc Action	C & M
	Quadrupole	Tuno	E:+	$\langle \beta \rangle$	С
	gradient	Tune	I IL	$\Delta Q_{ m min}$	-
Passive		Beam size		Coupling	-
		Loss rate			-
		Luminosity	Optimizers	Int. luminosity	-
		Lifetime		IP beam size	-
		Schottky noise		Q, Q'	

ISR <u>1983</u>

LEAR 1988

UEH13-UEH14
UEH14-UEH23
UEH21 – UEH22
UEH22 – UEH23

Measured phase advance (degrees) 15.4 192.1 120.7

34.1

calculated by COMFORT
(degrees)
16.0
191.2
118.3
36.3

s (m)

Cornell e^+/e^- Storage Ring (CESR) 2000

D. Sagan et al, PRSTAB **3** 092801. Using LEP method for β functions. Best optics correction in lepton colliders

SPS BPM signals in 2000

BPM synchronization issues required bad BPM detection. The **RMS** in a FFT window is a good indicator.

Cleaning with SVD, 1999

 $B_{t-b-t} = USV^T$ bpm matrix

Bad BPMs easily identified as uncorrelated signals.

Noise removed by cutting low singular values

J. Irwin et al, Phys. Rev. Letters 82, 8

PEP-II, from ϕ to virtual model to β

Y. Yan et al, SLAC-PUB-11925 2006

LHC 1st measurement (inj, 90 turns), 2008

Single error identified with segment-by-segment technique

AC dipole

- ★ AC dipoles were proposed to avoid spin resonances and do optics meas: M. Bai et al, Phys. Rev. Lett. 80, 4673 (1998).
- ★ Major breakthrough for protons: Excite betatron oscillations (forced) without emittance blow-up
- ★ Used in AGS, RHIC, SPS, Tevatron & LHC
- \star LHC has pprox20 optics within the magnetic cycle
- ★ The magnetic cycle takes about 2.5h
- ★ LHC optics commissioned thanks to AC dipole

N-BPM method, LHC 2015

TABLE III. Systematic error of the measured β -function at arc BPMs for using different BPM combinations. The phase advance between consecutive BPMs is approximately $\pi/4$.

BPM combination	Systematic error (%)
\blacktriangle : probed, \blacktriangle : used, \blacktriangle : unused	
	0.3
	0.4
	1.0
	7.1
	1.1
	1.4
	1.7
	1.8
	7.9
	22.3
	1.3
	1.9
	6.1
	1.0
	3.0
	4.5
	5.2
	1.6

Extension of the LEP 3-BPM method to any number of BPMs. Great improvement on β measurement (from ϕ). Good knowledge of lattice errors fundamental.

A. Langner & R. Tomas PRSTAB 18, 031002 (2015)

2015 LHC Optics commissioning

100% peak β -beating again at $\beta^* =$ 40 cm. After corr rms β -beating 2-3%

LHC changing in time scale of minutes

BPM phase advance seems to jitter in the $\approx 3 \times 10^{-4} 2\pi \ (\Delta \beta / \beta_{jitter} \approx 0.3\%)$ level in minutes \rightarrow 4 times larger in HL-LHC?

LHC: Using amplitude info from BPMs

Currently up to 20% error in β from amp. due to BPM cal. Could we do a beam-based calibration?

RHIC: Using amplitude info from BPMs

Successful corrections of β from amplitude using ICA (SVD). X. Shen et al, PRSTAB **16**, 111001 (2013)

The LHC High Luminosity upgrade

Peak β of 20 km! Larger β in the arcs...

eta-beating in HL-LHC before correction

eta-beating in HL-LHC after corrections

- ★ Optics measurements dominated by closed orbit techniques: ORM and LOCO (J. Safranek, NIM-A 388, 1997)
- Recently improved BPM electronics and filters have allowed turn-by-turn techniques with the potential of being faster
- ★ Comparison campaign (various labs) on-going
- ★ Brief overview follows

SOLEIL, LOCO, 2008

DIAMOND reached similar β -beating

SOLEIL, turn-by-turn, 2015

M. Carlá et al, IPAC 2015

Table 1: Beta and phase beat results for Soleil and Alba. The measurements have been acquired after correcting the machine with <u>LOCO to a beta-beat smaller than 1%</u>.

	Soleil	Alba
β -beat (H)	1.9×10^{-2}	1.5×10^{-2}
β -beat (V)	1.8×10^{-2}	1.4×10^{-2}
ϕ -beat (H)	8.5×10^{-3}	5.9×10^{-3}
ϕ -beat (V)	1.3×10^{-2}	4.6×10^{-3}

 β from amp.

 $\Delta\beta/\beta_{tht}\approx 2\%$

What would β from ϕ (N-BPM) say?

ALBA, LOCO Vs β from Amp. (turn-by-turn)

ALBA, LOCO Vs N-BPM (turn-by-turn)

	A. Langner et al, IPAC 2015		
	Method vs. nominal model	RMS β-beating (%)	
		horizontal	vertical
ALBA	N-BPM (phase)	1.5	2.2
	From amplitude	2.0	2.7
	LOCO	1.1	1.6

Consistent β -beating measurements but:

- is LOCO underestimating $\Delta\beta/\beta$?
- is β from amp overestimating it? (due to BPM gain)

SLS $\Delta\beta/\beta \approx 2-3\%$. Turn-by-turn likely inaccurate due to bad BPMs. Interesting comment on LOCO:

M. AIBA et al.

systematic error(s). In the analyses presented, all methods show limitations arising from systematic errors when the beta-beat is corrected down to a few % level. In the case of LOCO, the calibrated model may underestimate the betabeat, when its minimum value is taken. Phys. Rev. ST Accel. Beams 16, 012802 (2013)

- [5] P. Castro et al., in Proceedings of the Particle Accelerator Conference, Washington, DC, 1993 (IEEE, New York, 1993), pp. 2103–2105.
- [6] M. Bai, S. Lee, J. Glenn, H. Huang, L. Ratner, T. Roser, M. Syphers, and W. van Asselt, Phys. Rev. E 56, 6002 (1997).
- [7] R. Tomás, Ph.D. thesis, University of Valencia, 2003.

ESRF, ORM Vs N-BPM

rms β -beating of 3-5%. Good agreement between the 2 techniques

ESRF, ORM Vs N-BPM Vs β from amp.

L. Malina, A. Franchi et al, unpublished

Beta-beating	Phase [%]	Amp [%]	ORM [%]
betax	5	5	5.2
betay	3.4	3.4	3.4

Good agreement between all techniques

PETRA III, turn-by-turn, 2010

 β -beating=4-5%, similar to LOCO measurement.

- **\star** LHC has achieved an rms β -beating of 2-3%, comparable to most light sources
- ★ The challenge lies ahead for HL-LHC $(\Delta\beta/\beta=200\% !)$
- ★ SOLEIL and DIAMOND have achieved 0.3-0.4% β -beating with LOCO
- **\star** Still missing: Observe this 0.3% β -beating with turn-by-turn techniques