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Overview of optics measurements
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free or position Fit, β from ampl. C & M [?, ?, ?]
forced T-b-T FT, Action C & M [?, ?]

SVD Coupling C [?]
+ RF freq Dx/

√
βx M [?]

Chrom. coupling - [?, ?]
+ RF phase Q’ - [?]
Orbit φ, β fit φ, β C [?]
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Loss rate Inj. efficiency - [?, ?]

Luminosity Optimizers Int. luminosity - [?, ?]
Lifetime IP beam size -
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Figure 6: Measurement of the phase advance 

We conclude that the agreement is quite good. 
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Chapter 12 

MEASUREMENTS OF THE PHASE ADVANCE IN LEAR 

It is possible to measure the centre of the charge in a bunched beam by using electrostatic 
pick-ups [BERNA83] to get the average position of the bunch at one location in the accelerator for 
each turn. Such a system has been developed for LEAR (Papy-Q system) [ASSE085]. It has been 
widely used to monitor the tune of the betatron motion. In this case one excites strong coherent 
betatron oscillations by kicking a well-cooled13 beam with, for example, the injection kicker. The 
signal from a pick-up is then Fourier-analysed by using the DFT technique. This gives the betatron 
frequency. However, since one also obtains the corresponding phase, one can measure the phase 
advance between two pick-ups by storing the data from two pick-ups in the same plane. It is possible 
to make a comparison with the calculated lattice functions from programs such as COMFORT 
[WOODL83] 1 4 used in the design of an accelerator. 

Since the injection kicker only kicks in the horizontal plane the measurements are restricted to 
this plane. A typical result is shown in Figure 6 and the measured phase advances are presented in 
Table 5. 

Table 5: Phase advance 

Pick-ups Measured phase advance Calculated by COMFORT 
(degrees) (degrees) 

UEH13-UEH14 15.4 16.0 
UEH14-UEH23 192.1 191.2 
UEH21-UEH22 120.7 118.3 
UEH22-UEH23 34.1 36.3 
UEH23-UEH24 15.9 16.0 

Each measured value is from a single measurement. The calculated values have been obtained 
from COMFORT data for the working point QBx = 2.305, Q^ = 2.725 with adjustment for the 
measured tune Qx » 2.302 by the linear interpolation 

By a cool beam here is meant a beam where the particles' transverse momenta are small compared to their longitudinal 
momenta and the spreads in the longitudinal momenta are small (compare with a laser beam). 

The lattice calculations were done by R. Giannini (unpublished). 
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Betatron function measurement at LEP using the BOM 1000 turns 
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A b&act etc.) constrains the maximum due to non-linear fields. 
A new method for measuring the beta function around These oscillations are then sampled at each BPM for 1024 

LEP is presented. The method uses phase difference mea- turns (i.e. during 91 msec) (see fig. 1). When the condi- 
surements between three adjacent beam position monitors 
to obtain the value for the beta function at the monitors 
and in their neighbourhood, e.g. at interaction points, 
electrostatic separators etc. The phase differences are ob- 
tained from measuring coherent betatron oscillations for 
1024 turns at the 504 beam position monitors. After a dii- 
cussion of the accuracy of the method the measured values 1 Turn6 1024 

for the beta function are compared with the theoretical 
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another method using a fit of the phase over 15 monitors. 

I. INTRODUCTION 

During 1992 on several occasions the optics mismatch 
was measured at LEP using the phase difference measure- 
ments realised by the BOM (Beam Orbit Measurement 
system) 1024 turns facility. In this report a new method 
to obtain the experimental values of the beta and alpha 
functions from these phase difference measurements is pre- 
sented. The accuracy of this technique has been studied 
by obtaining the error in the phase measurement and its 
good performance proved by comparing the results with 
other methods. This method is used for checking the ma- 
chine optics, however a very precise measurement of the 
beta function will be very helpful at the radiation source 
for the exact calibration of emittance monitors, at Beam 
Position Monitors (BPM) for their calibration, at Interac- 
tion Points (IP) and at Electrostatic Separators (ES). 

Figure 1: Single BPM recording the excited horizontal 
beam motion (scale: 8 mm peak to peak, time=88.9 
psec/turn) 

tions of the machine are stable, a constant amplitude of a 
few milimeters is observed in the plane of excitation. Ap- 
plying harmonic analysis we obtain the amplitude A and 
the phase Jo of these oscillations at each BPM: 

A= 2JW 

N 
p = -cot(g) 

where N = 1024 and 

N N 

C = C zi cos(Z*iq) 

i=l 

S = x Zi sin(Z*iq) 
i=l 

Because the amplitude obtained is proportional to #, one 
can compare the measured values of the amplitudes at the 
BPMs with the expected ones and deduce /3. Unfortu- 
nately this method depends on the calibration factor of 
each BPM. However, the phase differences are measured 
with high precision and there is no systematic error since 
the phases are independent of individual monitor calibra- 
tion errors. 

II. PHASE MEASUREMENT AT LEP 

The 1024 turns beam position measurement at each 
BPM is used in combination with the LEP Q-meter. The 
Q-meter measures the fractional part (q) of the betatron 
tunes by exciting and observing coherent transverse oscil- 
lations in the horizontal and vertical planes with a sin- 
gle dedicated beam position monitor [l]. To measure the 
phase, one specific bunch is excited in one plane (hori- 
zontal or vertical) with a frequency close to the betatron 
tune. The amplitude of the bunch oscillations depends on 
the proximity of the exciting frequency to the tune and 
on the strength of the excitation. For a precise measure of 
the phase of these oscillations, the beam must be excited to 
high amplitude to gain in signal to noise ratio. The max- 
imum amplitude is limited by the machine aperture but 
also the presence of non-linear elements (like sextupoles 

III. PHASE ERROR MEASUREMENT 

With constant amplitude, the error of the phase is pro- 
portional to the noise of the position signal of the BPM. 
Using harmonic analysis we obtain the following expression 
for the error: 

1 2 
up = 2 p 

J (1) 

with: 
N : the number of the samples (1024), 
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between the measured cot \kiz--cot Qlz and the theoretical 
one: 

h..P) = &(theo) 
cot *la(crp)- COtcqerp) 

cot %l(fhco) - cot %(theo) 
(10) 

and one easily deduces the equivalent expression for alpha. 
The method is limited for a regular structure such as the 
FODO cells in the arcs of LEP when the optics has a phase 
difference of 90 degrees between consecutive BPMs. In this 
case, cot \k is zero and ,f3 can not be calculated. 

V. BEATING OF THE BETA FUNCTION 
MEASUREMENTS 

During last years run, LEP was operated mainly using 
90 degrees lattice optics and only a few times in special 
Machine Development (MD) schedules the 60” lattice op- 
tics was used. In the following pictures all the results are 
shown as the ratio between the experimental value of beta 
obtained by this method and the theoretical beta calcu- 
lated with the MAD model [4]. Figure 3 shows the verti- 
cal beta function for 60° lattice at the BPMs obtained by 
this method (li ne and crosses) compared to the beta beat- 
ing obtained by fitting [5] the measured phase difference 
over 15 BPMs (white boxes) in the arc between Interaction 
Point 2 (IP2) and IP3. The latter method makes the hy- 
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Figure 3: Comparison between beta beating fit method 
and the value of beta obtained with eq. 8 

pothesis that the optics mismatch between the predicted 
and the measured phase difference is due to beta beating, 
while the former makes no assumption. The small differ- 
ence between the results shows that almost all the effect 
seen is due to beta beating. 
Figure 4 shows the beta function calculated at some of the 
beam instruments at LEP and in fig. 5 at the horizontal 
electrostatic separators. These values of beta are calcu- 
lated from the ones obtained at the closest BPM around 
the instrument. 
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Figure 4: Vertical beta function measured at Beam Instru- 

mentation (90“ lattice, 46 GeV) 

beta measured at horizontal electrostattc separators 

Figure 5: Horizontal beta function measured at Horizontal 
Separators (90° lattice, 46 GeV) 

VI. CONCLUSION 

From the BOM 1024 turns measurement the phase er- 
ror is typically about 4-5 mrad for a signal of 1 mm of 
amplitude and 1024 points. An algorithm applied to three 
consecutives BPMs gives the local values of the betatron 
function assuming no magnetic error between the three 
BPMs. Apart from when the phase difference between 
BPMs is 90°, the value of beta is determined with a preci- 
sion better than 5 % in general. From the same algorithm 
the alpha function is also calculated and both alpha and 
beta values can be transported from the BPMs to other 
points of interest such as at emittance monitors, radiation 
source instruments, electrostatic separators and interac- 
tion points. 
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Betatron phase and coupling measurements at the Cornell Electron/Positron Storage Ring

D. Sagan, R. Meller, R. Littauer, and D. Rubin
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

(Received 28 April 2000; published 5 September 2000)

Measurement of the betatron phase in the vertical and horizontal planes as well as the transverse
horizontal-vertical coupling is a standard procedure now used at the Cornell Electron/Positron Storage
Ring. The measurement is made by shaking the beam and observing the phase of oscillation at detectors
located around the ring. The measurements allow quadrupolar errors to be corrected.

PACS numbers: 29.20.Dh, 29.27.Fh, 29.40.Gx

I. INTRODUCTION

Errors in the lattice parameters of a storage ring can
come from many sources. For example, the calibration
constants used to set quadrupole magnets may be inaccu-
rate, the orbit may pass through the sextupoles off center,
or there may be unsuspected quadrupole fields associated
with machine elements. To verify that a design lattice
has actually been implemented correctly, one or more se-
lected lattice functions must be measured around the ring
to be compared with the expected values. At CESR, the
Cornell Electron/Positron Storage Ring, exploiting the fact
that the quadrupole magnets are individually controlled,
one method that has been used is to measure the tune Q as
a function of quadrupole strength k. The Twiss parameters
bh and by at the quadrupole are then obtained from the
standard formula [1]

dQh,y �
bh,y

4p
dk l , (1)

where l is the length of the quadrupole. This procedure
has several disadvantages. It perturbs the quadrupoles, and
thus hysteresis must be accounted for; also, the permis-
sible tune excursion may be limited if the operating point
falls close to a destructive resonance. Since the slew rate
of the quadrupole power supplies is limited, the procedure
is slow: Typically it takes 30 min to make a measurement
at approximately 100 quadrupoles. Finally, whenever the
beam is not centered in the quadrupole under study, vary-
ing k provokes orbit distortions which in turn will cause
tune shifts due to the sextupoles.

An alternative approach is to shake the beam at some
betatron sideband and then measure the phase of the os-
cillations at the beam position detectors around the ring.
This yields the betatron phases fh,y at the detectors which
can then be related to the beta function via [1]

1
bh,y

�
dfh,y

ds
. (2)

This technique has been used at, for example, LEP [2]
and the ISP [3] where, since the ISP is a proton machine,
the shaking had to be swept through resonance to avoid
excessive beam blowup. At CESR, measuring the phase by

this method has several advantages. It is quick, typically
taking 40 s for about 100 detectors. Since the quadrupoles
are not perturbed and the tune is not changed, the danger
of losing the beam is minimized. Additionally, the x and y
components of the oscillations at a detector can be resolved
allowing for extraction of the local coupling parameters.
Measuring the coupling in CESR is important to ensure
that the coupling produced by the CLEO detector solenoid
has been properly compensated.

II. PHASE MEASUREMENT HARDWARE

The experimental setup is shown schematically in
Fig. 1. A shaker excites a beam normal mode and the
oscillations of the beam are monitored via a beam position
detector. The beam signal is sent through a signal proces-
sor which stretches and amplifies the signal. The detector
signal is then sent to a signal analyzer which measures
the phase and amplitude of the signal at the normal mode
frequency. Ultimately, the data are transferred to the main
computer for storage and analysis.

In actuality there are two shakers: one is used to excite
the horizontal mode and the other is used to excite the

Shaker
Drive

Signal
Processor

Signal
Analyzer

Ref.

Channel

Signal
Channel

d
1

d
2

d
3

Main
Computer

FIG. 1. Schematic illustration of the experimental setup. The
beam position detectors are labeled d1, d2, d3, etc.
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FIG. 5. Initial measurement of phase and coupling before cor-
recting. All graphs show the differences between measurement
and design. The horizontal scale for the phase and C12 data is the
beam detector index, while for the b data it is the quadrupole
index. (a) and (b) horizontal and vertical phase differences.
(c) C12 difference. By design, the design C12 is zero except
within the “coupling bump” near the interaction region which
compensates the coupling of the CLEO detector solenoid. (d)
and (e) are the b difference.

fitted kj’s and uj’s are (presumably) equal to the actual
kj ’s and uj’s present in the ring, the correction is made by
adjusting the quadrupole strengths and rotation angles by
an amount D � design 2 fit.

Figure 6 shows the deviations of the measured lattice
parameters from the design after four rounds of measur-
ing and correcting the optics, with each round of correc-
tions taking about 5 min. For all intents and purposes, the
errors in the lattice parameters are now negligible. For
CESR, with the C12 error being 0.01 rms as shown in the
figure, the coupling will not have any significant effect
on the luminosity [10]. The correction has reduced the
phase error to 1± rms, and the b error is 2% rms. Suc-
cessive measurements show that the reproducibility of the
phase data is 0.05±, while the C12 data are reproducible
to 0.002.
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FIG. 6. Measurement after correcting the phase and coupling
errors. This is to be compared to Fig. 5. Notice that the scales
for all the graphs have been reduced.

V. CONCLUSION

Measuring the phase advance of coherent betatron
oscillations has proved to be a rapid and accurate method
for determining and then correcting errors in the imple-
mentation of a desired lattice in CESR. It also measures
the local coupling parameters around the ring, thus helping
with solenoid compensation, quadrupole rotations, and
skew-quadrupole corrections.

An important advantage of measuring betatron phase
over measuring b is that it is sensitive to variations in
the phase between widely separated points. This can be
important for closure of bumps. Additionally, CESR is
intended to be east /west symmetric, with this symmetry
causing the strengths of some resonances to vanish. Since
phase errors can break this symmetry, it is important to
measure the phase and correct it accurately.

A possible disadvantage of the phase measurement is
its insensitivity to b in regions of large b (and hence
small phase advance). However, since large bx is usually
accompanied by small by (and vice versa), this has not
proved to be a significant limitation in CESR.
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SPS BPM signals in 2000
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Cleaning with SVD, 1999
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FIG. 1. E�ect of cutting noise

Figure 1 demonstrates the e�ect of the noise-cut. 5000
pulses over 125 BPMs were generated to simulate various
signals in SLC. Then random noise, 1 �m for the �rst 7
and 10 �m for the rest BPMs, was added. After cutting
the noise, the residual noise was obtained by subtracting
the signals from the noise-reduced matrix. Figure 1 plots
the added noise in circles and residual noise in dots for
the �rst pulse. Results for all other pulses are similar.
It is remarkable that this simple procedure can signi�-
cantly reduce the random noise of each individual BPM
reading. In other words, we can improve BPM resolu-
tion individually by using a large number of BPMs and
su�ciently large number of pulses. Though simple and
powerful, this method seems not to have been used before
for beam dynamics analysis. However, a similar method
( i.e. setting signal instead of noise singular values to
zero) has been used for estimating BPM resolutions [8].

V. SINGULAR VALUE DECOMPOSITION

In this section we focus on the physical and statistical
meaning of the SVD results in order to illustrate their
usefulness and limitations for beam dynamics analysis.
Mathematically, an SVD of the matrix B yields

B = USV T =

dX
i=1

�iuiv
T
i (11)

where UP�P = [u1; � � � ; uP ] and VM�M = [v1; � � � ; vM ]
are orthogonal matrices, SP�M is a diagonal matrix with
nonnegative �i along the diagonal in nonincreasing order.
d = rank(B) is the number of nonzero singular values. �i
is the i-th largest singular value of B and the vector ui
(vi) is the i-th left (right) singular vector. Often (assum-
ing M < P since we are interested in overdetermined
system only) a trimmed down version is used, in which
only the �rst M columns of U and the �rst M rows of
S are kept. The singular values are uniquely determined
and the singular vectors corresponding to the distinct sin-
gular values are determined up to a sign. The singular
values reveal information of the matrix rank while each
set of singular vectors form an orthogonal basis of the
various spaces of the matrix. These properties make the
SVD extremely useful. There are direct relationships be-
tween SVD and the eigenvalue problem of real symmetric
matrices, which can be seen from

BTB = V S2V T and BBT = US2UT ; (12)

i.e. the column vectors of V (U ) are eigenvectors of
the real symmetric matrix BTB (BBT ) with eigenvalues
given by the corresponding diagonal term �2i 's.
Since BTB is the covariance matrix of BPM readings,

SVD in fact accomplishes the principal components anal-
ysis of BPM readings. Unlike the physical base decompo-
sition given in Eq.(6), the orthogonal base decomposition
in Eq.(12) is uniquely determined by B. From this we
can conclude that both the singular values (in S) and the
right singular vectors (in V ) should be repeatable for dif-
ferent ensembles of pulses, providing that the machine is
stable (i.e. all machine conditions are the same). On the
other hand, the U matrix will change from one ensemble
to another because BBT does not represent a stationary
statistical property of the system.
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PEP-II, from φ to virtual model to β

To offset radiation damping, the most economic process
for such data acquisition would be through two orthogonal
resonance excitations, one at the horizontal (eigen-plane 1)
and the other at the vertical (eigen-plane 2) betatron tunes,
and then take and store buffered BPM data. Since a beta-
tron motion has two degrees of freedom (the phase and the
amplitude), each excitation would generate a pair of conju-
gate (cosine- and sine-like) betatron motion orbits. They
are obtained from the real and imaginary parts of tune-
matched FFT respectively. Therefore, a complete set of 4
independent linear (X and Y) orbits can be extracted from
the two eigen-mode excitations.

DISPERSION

To compliment the above linear geometric data acqui-
sition, longitudinal oscillation at the synchrotron tune is
also resonantly excited for an additional transverse BPM
data acquisition. Dispersions at BPM locations are then
measured by taking a longitudinal-tune-matched (zoom-
ing) FFT from such BPM turn-by-turn BPM data.

RESPONSE QUANTITIES AND THEIR
CORRESPONDING QUANTITIES FROM

MEASUREMENT

Once the variables in the virtual lattice model, that is ~X
in Eq. 1, is given, one can update the virtual lattice trans-
fer matrices. The response quantities (~Y in Eq. 1), that is,
the phase advances and the Greens’ functions among BPMs
and the dispersions at BPM locations, are then calculated
by projection of these updated transfer matrices or the con-
catenated one-turn linear maps. Their corresponding quan-
tities from measurement (~Ym in Eq. 1) are described below:

Phase advances

The orbit betatron phase at each BPM location can be
obtained by taking the arctangent of the ratio of the imagi-
nary part to the real part of the resonance excitation FFT
mode [2]. Phase advances between adjacent BPMs can
then be calculated by subtraction. Note that the ratio of the
imaginary part to the real part of the FFT will cancel the lin-
ear BPM gains but not the BPM cross couplings. Therefore
the phase advances among BPMs are repeatedly calculated
during the Least Square fitting process as the BPM cross
couplings and BPM gains are updated to correct the linear
orbits.

Linear Green’s functions

The linear Green’s function are simply the
Rab12, R

ab
34, R

ab
14, R

ab
32 of the linear transfer matrix be-

tween any two BPMs labeled as a and b. They are
given in the data measurement space [3] and so to match
these measured quantities, the variables for BPM gains
and cross couplings have to be applied to the response
Greens’ functions from the updated virtual model for their
transformation into the data measurement space.

MEASUREMENT AND IMPROVEMENT
OF PEP-II STORAGE RINGS

Once the optics-matched virtual machine is obtained
through an SVD-enhanced Least-Square fitting [2], the up-
dated transfer matrices can be concatenated into one-turn
maps at the desire locations for calculating optics parame-
ters. One can also find solutions by fitting a well selected
set of normal and skew quadrupoles as well as orbit cor-
rectors for improving the optics, such as reducing the beta
beating and the linear coupling, optimizing beta functions
at IP, bringing the working tune to near half integer, and
improving dispersion. Furthermore, this virtual model can
feed to the lattice program LEGO and the beam-beam sim-
ulation [4].

Shown in Figure 1 is the PEP-II HER beta functions on
Nov. 22, 2005, which shows high beta beat and was sub-
sequently corrected through the solution from the MIA vir-
tual model. Shown in Figure 2 is the PEP-II beta function
on Mar. 16, 2006, showing that the beta beat had been
much improved. From the MIA accurate virtual machine,
we have been able to identify a key magnet (QF5L). This
normal quadrupole along with the linear trombone quads
and local and global skews are used as variables in the MIA
program for finding the solution from the virtual model.
The solution is then dialed into the PEP-II HER.

As mentioned above, we have been able to include dis-
persion measurement in the virtual model without adding
new type of variables. Figure 3 compares dispersion from
the virtual model and from the direct measurement for HER
on Nov. 22, 2005. There is no bending magnet or orbit cor-
rector involved in the fitting. The vertical dispersion beat
was subsequently improved with the MIA virtual models.

MIA virtual model has also been applied to PEP-II LER.
As an example, PEP-II LER major orbit steering usually
accompanied by a much degraded linear optics due to
change of sextupole feed-downs, which had been very dif-

−500 0 500 1000 1500
0

20

40

60

80
β x (

m
)

−500 0 500 1000 1500
0

20

40

60

80

β y (
m

)

distance from IP
(m)

Figure 1: Comparing beta function between the ideal lat-
tice (blue color) and the virtual machine on Nov. 22, 2005
for PEP-II HER. The PEP-II HER showed high beta beat,
which were subsequently corrected through solution from
the virtual model
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Figure 2: Comparing beta function between the ideal lat-
tice (blue color) and the virtual machine on Mar. 16, 2006
for PEP-II HER. Beta beat shown in Fig. 1 has been much
improved. From the accurate virtual machine, we have
been able to identify a key magnet (QF5L). This normal
quadrupole along with the linear trombone quads and lo-
cal and global skews are used as variables for finding a
solution from the virtual model.

ficult to correct without an accurate optics model. With the
accurate MIA virtual model established for the LER right
after the steering, we have been able to correct the linear
optics such that the major LER orbit steering in April, 2006
is survived. Figure 5 shows the LER linear coupling char-
acteristics after dialing in solutions right after the major
orbit steering.

CONCLUSION

We have used a model-independent analysis (MIA) for
accurate orbit and phase advance measurement and then
uses an SVD-enhanced Least Square fitting for building ac-
curate virtual models for e+, e- storage rings. MIA virtual
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Figure 3: Comparing dispersion between the direct mea-
surement (green color) and the virtual machine on Nov. 22,
2005 for PEP-II HER. No bending magnet or orbit correc-
tor were added as fitting variables. The vertical dispersion
beat was subsequently improved with the MIA virtual mod-
els.
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Figure 4: Comparing linear coupling between the ideal lat-
tice (blue color) and the virtual machine on Apr. 21 for
PEP-II LER after a major orbit steering that was accom-
panied by a MIA solution for linear optics correction. This
PEP-II LER coupling is with a record low residual from the
ideal lattice. Top plot shows the Eigen ellipse tilt angles
while the bottom plot shows the Eigen ellipse axis ratios
for Eigen plane 1 and 2 respectively.

model matches, very well, the real-machine linear optics
including dispersion. It has successfully fixed PEP-II beta
beat, linear coupling, half-integer working tune. The suc-
cess comes from that: (a) the SVD-enhanced Least-Square
fitting can avoid degeneracies and has a fairly fast conver-
gence rate allowing for application to a fairly large system;
(b) the PEP-II ring has a reasonable amount of BPMs al-
lowing for extracting sufficient physical quantities for fit-
ting; and (c) the linear Green’s functions among BPMs can
provide essentially unlimited fitting constraints that add
significantly on the convergence.
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LHC 1st measurement (inj, 90 turns), 2008
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AC dipole

F AC dipoles were proposed to avoid spin
resonances and do optics meas: M. Bai et al,

Phys. Rev. Lett. 80, 4673 (1998).

F Major breakthrough for protons: Excite
betatron oscillations (forced) without
emittance blow-up

F Used in AGS, RHIC, SPS, Tevatron & LHC

F LHC has ≈20 optics within the magnetic cycle

F The magnetic cycle takes about 2.5h

F LHC optics commissioned thanks to AC dipole



N-BPM method, LHC 2015

plane for sextupole magnets. The gradient uncertainties for
the different quadrupole families have been derived from
magnetic measurements [15,16]. The distribution of the
measured b2 component and its uncertainty have been fitted
with a Gaussian distribution for each magnet family, see
Table II.
This has been done for 1000 cases where the errors have

been varied following Gaussian distributions, truncated at
three standard deviations. From this Monte-Carlo simu-
lation one can derive the covariance matrix of the system-
atic errors Vsyst. In Table III the average systematic error at
arc BPMs is shown for different BPM combinations. In this
table several combinations of three BPMs have been
omitted since they show the same results due to the

symmetry and regular distribution of BPMs in the arcs.
It shows that the systematic error is around 0.3% when
neighboring BPMs are used. It increases to up to 1.5% in
most cases if one allows to skip one BPM, i.e., for a range
of 7 BPM. A range of 9 BPMs is not shown in this table as
the systematic error would be very large since the phase
advance to the fourth BPM left or right of the probed BPM
is around π. Although the systematic errors increase for
larger ranges of BPMs, for a range of 11 BPMs some
combinations of three BPMs can be found with uncertain-
ties below 2%.

C. Range of BPMs

The described algorithm to derive the β-function at one
BPM allows us in general to use the measured turn-by-turn
data of all available BPMs. However the farther away two
BPMs are the larger become systematic uncertainties of the
transfer matrix elements and the improvement of the error
bar will therefore become smaller. On the other hand the
computation of the covariance matrix is more time con-
suming for larger ranges of BPMs. The gain in precision
and accuracy was studied with simulations for a range of up
to 13 BPMs and different amount of used BPM combina-
tions. The BPM combinations were sorted according to the
expected error for the β-function based on their model
phase advances. This allows to exclude BPM combinations
that have unsuited phase advances, for example if the
cotangent in Eq. (1) becomes infinite. The BPM combi-
nations which are used for the computation of the
β-function are drawn from this sorted list starting with
the combinations with the best phase advances. Another
simulation was performed with a sample size of 1000,
where we applied random model uncertainties according to
the previous section, as well as a Gaussian noise of 200 μm
to the BPM data for an oscillation amplitude of 1 mm in the
arcs. From the fit of a Gaussian distribution to the variation
of the β-functions at each BPM we can derive the following
two parameters which describe the uncertainty of the
measurement. The mean value of the distribution of the
β-functions is the accuracy, as it shows a bias toward larger
or smaller results. The width of the distribution is the
precision which describes how much the results are spread-
ing. The average accuracy for all BPMs is always below
0.25% which shows that the bias toward a wrong result is
negligible, cf. Fig. 5. The improvement for the average
precision is shown in Fig. 6. The gain in precision is very
little when increasing the BPM range from 11 to 13. The
amount of BPM combinations increase the precision
noticeably up to using 6 BPMs and seem to saturate
after that. For the calculations for the LHC in the
following sections we are using 10 BPM combinations
from a range of 11 BPMs, which seems to be a good
compromise between computation time efficiency and
precision.

TABLE II. Gradient errors of different quadrupole magnets in
the systematic error calculation.

Error relative to their main field (10−4)

Quadrupole 450 GeV 4 TeV

MQ 18 17
MQM 13 12
MQY 11 7
MQX 4 4
MQW 34 13
MQT 73 77

TABLE III. Systematic error of the measured β-function at arc
BPMs for using different BPM combinations. The phase advance
between consecutive BPMs is approximately π=4.
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III. MODEL PRECISION

The calculation of β-functions from the phase advances
requires knowledge of the optics model, cf. Eq. (1).
Furthermore the N-BPM technique, which was described
in the previous section, will also use BPMs which are
farther away from the probed BPM. Therefore model
uncertainties play a more important role. In this section
the benefit of considering measured b2 of the LHC dipoles
[17] in the model for the optics measurement is studied. For
example, for injection optics at 4 TeV, including the dipole
b2 errors and the corresponding corrections with the arc
trim quadrupoles (MQT), shows a β-beating of around
10%. The dipole b2 errors are available for different
energies from the WISE simulation [15,16]. The phase
shift of the betatron oscillation due to the b2 errors is
canceled arc-by-arc using the arc MQT magnets for a
correction, as illustrated in [2]. Several measurements from

the 2012 LHC run with different optics configurations have
been reanalyzed using the N-BPM method as well as an
improved optics model which includes the dipole b2 errors.
The new systematic error from Sec. II B was compared to

the standard deviation of the three β-functions from using
different BPM combinations, which has been used in the
past as an estimator of the systematic errors. In Fig. 7 the
average relative error bars of these measurements are shown
for injection optics at 0.45 TeV and 4 TeV (flat top), a
squeeze to β� ¼ 0.6 m and a squeeze to β� ¼ 0.2 m in the
achromatic telescopic squeezing (ATS) scheme [18]. The β�
values in this paper refer to the β-function at the ATLAS and
CMS IPs. The error bars for the measured β-function are
significantly reduced with the N-BPM method.

FIG. 5. Accuracy of the derived β-functions from simulations
for different ranges of BPMs and different amount of BPM
combinations. The oscillation amplitude was 1 mm in the arcs and
a Gaussian noise of 200 μm was applied.

FIG. 6. Precision of the derived β-functions from simulations
for different ranges of BPMs and different amount of BPM
combinations. The oscillation amplitude was 1 mm in the arcs
and a Gaussian noise of 200 μm was applied.

FIG. 7. Average error bar of the experimentally measured
β-function for different optics configuration at 4 TeV, except
for injection at 0.45 TeV. Error bars which are larger than 50%
were disregarded in the calculation of the average.

FIG. 8. Average error bar of experimentally measured
β-functions separately for the two error contributions. Top: Error
propagated from the uncertainty of the phase advance, cf. Eq. (7).
Bottom: Systematic errors as described in Sec. II B. For the
neighboring BPM method instead the standard deviation of the
three calculated β from different BPM combinations is used.
Beam energy was at 4 TeV, except for injection at 0.45 TeV.

A. LANGNER AND R. TOMÁS Phys. Rev. ST Accel. Beams 18, 031002 (2015)
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Extension of the LEP 3-BPM
method to any number of
BPMs. Great improvement
on β measurement (from φ).
Good knowledge of lattice er-
rors fundamental.



2015 LHC Optics commissioning
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LHC changing in time scale of minutes
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LHC: Using amplitude info from BPMs

Currently up to 20% error in β from amp. due to BPM cal.

Could we do a beam-based calibration?



RHIC: Using amplitude info from BPMs

IP4. The vertical peak beta-beat was reduced from 40% to
14%.

Now we discuss the Yellow ring which has excessively
large beta-beat in the vertical plane. The relative correction
strengths for the first trial of corrections are shown in Fig. 5
by the hollow bars. All relative correction strengths are
within 0.6%. The large relative correction strengths in the
arc quadrupoles were due to compensation of the large tune
shifts caused by the triplet and trim quadrupoles employed
to minimize the beta-beat. Figure 6 shows the simulated
evolution of tunes and rms beta-beat along the ramp-up
process of the first correction as well as the measured rms
beta-beat at 100% correction strength. The excursions of
tune variations are within 2� 10�3. The rms beta-beat is
reduced smoothly as correction strength increases. At full
correction strength, the 5% measured horizontal rms beta-
beat is lower than the predicted 5.4% value. The top plots

in Figs. 7 and 8 show the measured beta-beat of the Yellow
ring with and without the correction. The horizontal peak
beta-beat was reduced to 12%. However, in the vertical
plane there was still a peak beta-beat as large as 20%, and
the 11% measured vertical rms beta-beat is about 2 times
of the prediction shown in Fig. 6. This is due to the initial
large beta-beat in the vertical plane. Hence, a second
iteration was exercised.
The results of the second iteration of correction along

with the first iteration are shown in the two bottom plots in
Figs. 7 and 8. After the second iteration, significant vertical
beta-beat reduction was achieved, and the peak beta-beat
was successfully reduced to approximately 10% for both
planes. The computed relative correction strengths are
shown in Fig. 5 by the solid bars. The relative correction
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strength is also shown.
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Successful corrections of β from amplitude using ICA (SVD).
X. Shen et al, PRSTAB 16, 111001 (2013)



The LHC High Luminosity upgrade

Peak β of 20 km! Larger β in the arcs...



β-beating in HL-LHC before correction
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Almost 200% β-beating... ...is it possible?



β-beating in HL-LHC after corrections
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The HL-LHC challenge lies ahead!



Light sources

F Optics measurements dominated by closed
orbit techniques: ORM and LOCO (J. Safranek,

NIM-A 388, 1997)

F Recently improved BPM electronics and filters
have allowed turn-by-turn techniques with the
potential of being faster

F Comparison campaign (various labs) on-going

F Brief overview follows



SOLEIL, LOCO, 2008

0 50 100 150 200 250 300 350
−20

−10

0

10

20

H
−

be
ta

 b
ea

tin
g 

(%
)

s−position (m)

 

 iter #0: 5.1%rms
iter #1: 1.7% rms
iter #2: 0.3% rms

0 50 100 150 200 250 300 350
−10

−5

0

5

10

15

V
−

be
ta

 b
ea

tin
g 

(%
)

s−position (m)

 

 
iter #0: 5.5%rms
iter #1: 0.8% rms
iter #2: 0.3% rms

Figure 5: Beta-beating reduction: before applying LOCO
results (black), after one (blue) and two (red) iterations of
the code.
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measurements (blue) on diagnostics bench.

OTHER USES OF LOCO FOR DAILY
OPERATION

The use of LOCO does not reduce only to restoring the
lattice symmetry. LOCO is very suitable and valuable to
quickly identify problems with equipments. At SOLEIL
acquiring a full set of data (orbit response matrix, disper-
sion functions and e-beam noise) takes only 30 min. After
each shutdown period, a carefully analysis of these data is
performed using the LOCO code.

During maintenance and installation of new components
into the storage ring, parts of the 120 BPMs and 56 steerer
magnets are often disconnected. Even with right labeling of
the cables, re-cabling errors may occur from time to time.
A look to the measured orbit response enables to quickly
identify the errors and to correct for them.

Last year, four BPMs have been identified having the
wrong longitudinal position in the lattice with respect to
their real location in the storage ring. This mismatch of
only a few centimeters was showing up very clearly when
analyzing the LOCO results.

Similarly loose connection of the cables of the steer-
ers (secondary coils in the sextupole magnets) are quickly
identified.

On the long term, LOCO can also be used for surveying
the deterioration of the ring symmetry on a month to month
basis.

CONCLUSION

With the modified version of the LOCO code, including
constraints on the variations of the Q-magnet gradients, it
has been possible to restore the storage ring symmetry to a
0.3% RMS level in both planes and with gradient variation
compatible with the results of the magnetic measurements.

With respect to dynamics, the next step is to correct beta-
beating from insertion devices.

In parallel a reflection is on going concerning the use of
LOCO software directly by the operation group.
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∆β/βloco=0.3%
DIAMOND reached similar β-beating



SOLEIL, turn-by-turn, 2015

M. Carlá et al, IPAC 2015

�
�

�
� β from amp.

∆β/βtbt ≈2%

What would β from φ (N-BPM) say?



ALBA, LOCO Vs β from Amp. (turn-by-turn)
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ALBA, LOCO Vs N-BPM (turn-by-turn)

method which can be used to obtain the β-function uses

the amplitude information of the betatron oscillation. A

prerequisite for this method is the knowledge of the kick

action as well as the gain of the BPMs. Instead of assessing

these values, a normalized β-function was computed [14].

The β-beating from the amplitude method is compared to

the N-BPM method in Fig. 4 and the RMS β-beating are

shown in Table 3.

Method vs. nominal model RMS β-beating (%)

horizontal vertical

N-BPM (phase) 1.5 2.2

From amplitude 2.0 2.7

LOCO 1.1 1.6

Method 1 vs. Method 2

N-BPM (phase) vs. LOCO 1.0 1.5

N-BPM (phase) vs. amplitude 1.8 2.3

From amplitude vs. LOCO 1.4 1.7

N-BPM using LOCO model

N-BPM (phase) vs. LOCO 1.1 1.2
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Figure 4: Comparison of β-beating as derived from BPM

turn-by-turn data using either the amplitude information or

phase of the betatron oscillation (N-BPM method).

The amplitude method shows the largest deviation from

the nominal model. Using the normalized β-function on the

one hand does not suffer from uncertainties of the computed

kick action or BPM gains, but on the other hand introduces

further systematic errors.

Since the N-BPM method uses model transfer matrix

elements, it was also tested to run the analysis not with

the ideal model, but the model that has been fitted with

LOCO. The idea is that if the LOCO model is closer to

the real machine, then using the LOCO model for the N-

BPM method should also provide a result that is closer to

the LOCO result. There is a slight increase of the RMS

β-beating from the N-BPM method to LOCO of 10 % in the

horizontal plane and an improvement of 20 % in the vertical

plane. LOCO is not necessarily providing a model closer to

the real machine than the nominal model, especially in the

horizontal plane.

The maximum RMS β-beating between N-BPM method

and LOCO of 1.5 % is still very good, especially since pre-

vious studies of LOCO measurements at ALBA concluded

that only a value of ≈ 1 % for the accuracy of LOCO is pos-

sible [15].

CONCLUSION

Large efforts for optics measurements from turn-by-turn

data at ALBA resulted in a great step forward in both cases

of using either amplitude [14] or phase (N-BPM) of the beta-

tron oscillation. Deriving systematic errors and correlations

in the N-BPM method successfully increased the optics mea-

surement precision. The agreement with LOCO is now at a

level of≈ 1 %. For the first time turn-by-turn data and LOCO

show the same level of precision in the measurement of β-
functions at light sources. Further studies should also evalu-

ate the different performance for each method with respect

to reconstruct optics errors, which could be applied to the

machine on purpose before an optics measurements. Further-

more, comparisons to β-functions derived from quadrupole

variation should be possible in the future [16].
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Consistent β-beating measurements but:
is LOCO underestimating ∆β/β?
is β from amp overestimating it? (due to BPM gain)



SLS

SLS ∆β/β ≈2-3%. Turn-by-turn likely inaccurate
due to bad BPMs. Interesting comment on LOCO:

systematic error(s). In the analyses presented, all methods

show limitations arising from systematic errors when the

beta-beat is corrected down to a few % level. In the case of

LOCO, the calibrated model may underestimate the beta-

beat, when its minimum value is taken.
A direct comparison between QV and LOCO showed

consistent residual beta-beats, verifying the validity of the
standard linear optics correction procedure. TBT was
found to generate local beta-beats which were not observed
in the phase-beat. It is, however, noted that a new BPM
system that has a modified filter to suppress the overlap in
signal between turns, has been developed at ESRF [17].
TBT thus remains an attractive procedure, because of its
immediate measurement capabilities and its potential for a
complete online optics characterization.
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ESRF, ORM Vs N-BPM
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rms β-beating of 3-5%. Good agreement between
the 2 techniques



ESRF, ORM Vs N-BPM Vs β from amp.
Beta-beating measurements Comparison

With respect to nominal model

Beta-beating Phase [%] Amp [%] ORM [%]

betax 5 5 5.2

betay 3.4 3.4 3.4

betaerrx 0.55 0.2

betaerry 0.37 0.16

With respect to each other 

(scaled by model)
Amp vs ORM 
[%]

Phase vs ORM 
[%]

Amp vs Phase 
[%]

betax 1.9 1.7 1.1

betax 1.9 1.8 0.8

• Done for the most reasonable case from phase systematic error point of view
• 1000 turns
• The smallest kick we did

L. Malina, A. Franchi et al, unpublished

Good agreement between all techniques



PETRA III, turn-by-turn, 2010

The horizontal and the vertical axis label the fractional tune
and the monitor numbers along the ring, respectively. The
betatron tune lines are clearly visible in both planes at all
BPMs. The horizontal betatron tune νx appears at a nor-
malized frequency of 0.125, while the vertical tune shows
up at νy = 0.2844. Both lines can be recognized in the hor-
izontal as well as in the vertical plane reflecting a residual
coupling either present in the machine or created by BPM
tilts and/or crosstalk in the electronics. The residual cou-
pling derived from this measuremnt using

|f1001| =
1
2

√
line(0,1)h
line(1,0)h

line(1,0)v
line(0,1)v

is 3.5% which is in good agreement with the emittance ratio
measured at the optical diagnostics beam line.

Fractional Tune ν
x

B
P

M
 N

U
M

B
E

R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

120

140

160

180

200

220

Fractional Tune ν
y

B
P

M
 N

U
M

B
E

R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

120

140

160

180

200

220

Figure 1: Colour plot of the FFT of the signal acquired
at all BPMs after a combined horizontal and vertical kick
of εx = 1.225 mm mrad and εy = 0.85 mm mrad. The
horizontal (vertical) spectrum is shown in the upper (lower)
plot.

It is well known that the amplitudes of the fundamental
lines are proportional to the square root of the beta func-
tions. This fact is illustrated in figure 2 where square of the
measured amplitudes of the fundamental lines in figure 1
are plotted against the beta functions of the nominal optics
at the BPMs computed by MadX. Again the upper picture
corresponds to the horizontal plane while the lower picture
shows the vertical plane. The rms beta beating computed
from the measurement is 4.3% in the horizontal and 5.2%

in the vertical, which is in agreement with data acquired
with closed orbit response methods. The agreement in the
seven FODO arcs and especially in the wiggler sections is
very good. The largest deviations occur at the positions
of the center BPMs in the canted undulator sections. Due
to their geometry those monitors have a very small range
where the signal is reliable limiting their use in this type of
measurement.
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Figure 2: Comparison of the beta functions from the square
of the the amplitude of the tune spectral lines (red) and
from the MadX model (blue).

Higher order spectral lines corresponding to nonlinear
motion of the particle beam can be excited at large (hori-
zontal) kicks. In figure 3 the spectrum of the vertical plane
is shown recorded at a diagonal excitation of εx = 15 mm
mrad and εy = 0.4 mm mrad. Several additional lines ap-
pear, most relevant is the line corresponding to νy − νx at
a normalized frequency of 0.1612. It is associated to the
driving term of the sextupole resonance νx − 2νy.

The longitudinal dependence of this line is compared
with the result of a tracking run performed with SixTrack
in figure 4. PETRA III has sextupoles only in the seven
FODO arcs. They are distributed in two families in the 72
degree phase advance lattice so that the first order driving
terms cancel after 5 cells. The fourteen peaks correspond-
ing to this scheme are clearly visible in the plot. In the
center region the sextupole free new octant is recognized.
While the periodicity is reproduced very well the agree-
ment for amplitude is less striking. Both lines have been
normalized to the amplitude of the (vertical) tune line to
get rid of the dependence on the BPM gains.
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β from amp.

β-beating=4-5%, similar to LOCO measurement.



Summary & Outlook

F LHC has achieved an rms β-beating of 2-3%,
comparable to most light sources

F The challenge lies ahead for HL-LHC
(∆β/β=200% !)

F SOLEIL and DIAMOND have achieved
0.3-0.4% β-beating with LOCO

F Still missing: Observe this 0.3% β-beating with
turn-by-turn techniques


