β-beating

Focusing on techniques using turn-by-turn BPM data

R. Tomás

Thanks to M. Aiba, M. Carlá, A. Franchi, A. Garcia, U. Iriso, A. Langner, E. Maclean, L. Malina, T. Persson and P. Skowronski

Beam dynamics meets diagnostics 2015
November 4, 2015

Contents

Techniques and historical overview
Hadron accelerators and colliders
HL-LHC challenge
Light sources

Overview of optics measurements

		Observable	Analysis	Parameter	Depends on
	Betatron oscillation, free or forced + RF freq + RF phase	centroid position T-b-T	$\begin{gathered} \text { Fit, } \\ \text { FT, } \\ \text { SVD } \end{gathered}$	ϕ	-
				β from ϕ	M
				β from ampl.	C \& M
				Action	C \& M
				Coupling	C
				$D_{x} / \sqrt{ } \beta_{x}$	M
				Chrom. coupling	-
				Q'	-
	Orbit correctors	Orbit	ϕ, β fit	ϕ, β	C
			Model fit	any parameter	C \& M
			Fit	Arc Action	C \& M
	Quadrupole gradient	Tune	Fit	$\langle\beta\rangle$	C
			Fit	$\Delta Q_{\text {min }}$	-
		Beam size		Coupling	-
		Loss rate			-
		Luminosity	Optimizers	Int. luminosity	-
		Lifetime		IP beam size	-
		Schottky noise		Q, Q'	

ISR 1983

Fig. 3 Vertical betatron phase advance $\phi(\theta)$ relative to $Q \theta$ and beta function $B(\theta)$ of approximately one quadrant of the ISR. The lines give the AGS calculations and the points are the measurements.
β computed from oscillation amplitude J. Borer, A. Hofmann, J-P. Koutchouck et al CERN/LEP/ISR/83-12
Set-up for phase and amplitude r

LEAR 1988

J. Bengtsson, CERN 88-05

Pick-ups
UEH13- UEH14
UEH14-UEH23
UEH21 - UEH22
UEH22-UEH23

Measured phase advance (degrees) 15.4
192.1
120.7
34.1

Calculated by COMFORT (degrees) 16.0
191.2
118.3
36.3

LEP, β from $\phi, 1993$

$$
\begin{aligned}
& \beta_{1(e x p)}=\beta_{1(\text { theo })} \frac{\cot \Psi_{12(e x p)}-\cot \Psi_{13(e x p)}}{\cot \Psi_{12(\text { theo })}-\cot \Psi_{13(\text { theo) }}}(10) \\
& \beta \text { from } \phi, 3-B P M \text { method, model dep. }
\end{aligned}
$$

Cornell e^{+} / e^{-}Storage Ring (CESR) 2000

D. Sagan et al, PRSTAB 3092801.

Using LEP method for β functions.
Best optics correction in lepton colliders

FIG. 6. Measurement after correcting the phase and coupling

HERA-p

SPS BPM signals in 2000

BPM synchronization issues required bad BPM detection.
The RMS in a FFT window is a good indicator.

Cleaning with SVD, 1999

$$
\underset{\substack{t-b-t \\ \text { batrix }}}{B_{t-1}}=U S V^{T}
$$

Bad BPMs easily identified as uncorrelated signals.

Noise removed by cutting low singular values
J. Irwin et al, Phys. Rev. Letters 82, 8

PEP-II, from ϕ to virtual model to β

LHC $1^{\text {st }}$ measurement (inj, 90 turns), 2008

Single error identified with segment-by-segment technique

AC dipole

AC dipoles were proposed to avoid spin resonances and do optics meas: M. Bai et al, Phys. Rev. Lett. 80, 4673 (1998).
Major breakthrough for protons: Excite betatron oscillations (forced) without emittance blow-up
Used in AGS, RHIC, SPS, Tevatron \& LHC LHC has ≈ 20 optics within the magnetic cycle The magnetic cycle takes about 2.5 h LHC optics commissioned thanks to AC dipole

N-BPM method, LHC 2015

TABLE III. Systematic error of the measured β-function at arc BPMs for using different BPM combinations. The phase advance between consecutive BPMs is approximately $\pi / 4$.

BPM combination	Systematic error (\%)
\triangle : probed, \triangle : used, \triangle : unused	
$\triangle \Delta \Delta \Delta \Delta$	0.3
$\Delta \Delta \Delta \triangle \Delta$	0.4
$\Delta \triangle \Delta \Delta \Delta$	1.0
$\Delta \triangle \Delta \triangle \Delta$	7.1
$\Delta \triangle \Delta \triangle \triangle \triangle \Delta$	1.1
$\Delta \triangle \triangle \Delta \triangle \Delta \Delta$	1.4
$\Delta \Delta \triangle \Delta \Delta \Delta \Delta$	1.7
$\triangle \Delta \triangle \Delta \Delta \Delta$	1.8
$\Delta \triangle \triangle \Delta \Delta \triangle \triangle$	7.9
$\triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \triangle$	22.3
$\Delta \triangle \Delta \triangle \Delta \Delta \Delta \Delta \Delta \Delta$	1.3
$\Delta \triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	1.9
$\Delta \triangle \Delta \triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	6.1
$\Delta \triangle \Delta \triangle \Delta \Delta \Delta \Delta \Delta \triangle \Delta$	1.0
$\Delta \triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	3.0
$\Delta \triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	4.5
$\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	5.2
$\Delta \triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	1.6

Extension of the LEP 3-BPM method to any number of BPMs. Great improvement on β measurement (from ϕ). Good knowledge of lattice errors fundamental.
A. Langner \& R. Tomas PRSTAB 18, 031002 (2015)

2015 LHC Optics commissioning

100% peak β-beating again at $\beta^{*}=40 \mathrm{~cm}$.
After corr rms β-beating 2-3\%

LHC changing in time scale of minutes

horizontal phase noise $\left(10^{-3} 2 \pi\right)$
BPM phase advance seems to jitter in the $\approx 3 \times 10^{-4} 2 \pi\left(\Delta \beta / \beta_{j i t t e r} \approx 0.3 \%\right)$ level in minutes \rightarrow 4 times larger in HL-LHC?

LHC: Using amplitude info from BPMs

Currently up to 20% error in β from amp. due to BPM cal.
Could we do a beam-based calibration?

RHIC: Using amplitude info from BPMs

Successful corrections of β from amplitude using ICA (SVD). X. Shen et al, PRSTAB 16, 111001 (2013)

The LHC High Luminosity upgrade

Peak β of 20 km ! Larger β in the arcs...

β-beating in HL-LHC before correction

Before corrections

Almost 200\% β-beating...

β-beating in HL-LHC after corrections

The HL-LHC challenge lies ahead!

Light sources

Optics measurements dominated by closed orbit techniques: ORM and LOCO (J. Safranek, NIM-A 388, 1997)
Recently improved BPM electronics and filters have allowed turn-by-turn techniques with the potential of being faster
Comparison campaign (various labs) on-going
Brief overview follows

SOLEIL, LOCO, 2008

DIAMOND reached similar β-beating

SOLEIL, turn-by-turn, 2015

M. Carlá et al, IPAC 2015

Table 1: Beta and phase beat results for Soleil and Alba.
The measurements have been acquired after correcting the machine with LOCO to a beta-beat smaller than 1%.

	Soleil	Alba
β-beat (H)	1.9×10^{-2}	1.5×10^{-2}
β-beat (V)	1.8×10^{-2}	1.4×10^{-2}
ϕ-beat (H)	8.5×10^{-3}	5.9×10^{-3}
ϕ from amp.		
beat (V)	1.3×10^{-2}	4.6×10^{-3}

$\Delta \beta / \beta_{t b t} \approx 2 \%$
What would β from ϕ (N-BPM) say?

ALBA, LOCO Vs β from Amp. (ummb-btum)

ALBA, LOCO Vs N-BPM (turn-by-turn)

A. Langner et al, IPAC 2015

$A \subset B A$	Method vs. nominal model N-BPM (phase)	RMS β-beating (\%)	
		horizontal	vertical
		1.5	2.2
	From amplitude	2.0	2.7
	LOCO	1.1	1.6

Consistent β-beating measurements but: is LOCO underestimating $\Delta \beta / \beta$?
is β from amp overestimating it? (due to BPM gain)

SLS $\Delta \beta / \beta \approx 2-3 \%$. Turn-by-turn likely inaccurate
due to bad BPMs. Interesting comment on LOCO:
M. AIBA et al.

Phys. Rev. ST Accel. Beams 16, 012802 (2013)
systematic error(s). In the analyses presented, all methods show limitations arising from systematic errors when the beta-beat is corrected down to a few \% level. In the case of LOCO, the calibrated model may underestimate the betabeat, when its minimum value is taken.
[5] P. Castro et al., in Proceedings of the Particle Accelerator Conference, Washington, DC, 1993 (IEEE, New York, 1993), pp. 2103-2105.
[6] M. Bai, S. Lee, J. Glenn, H. Huang, L. Ratner, T. Roser, M. Syphers, and W. van Asselt, Phys. Rev. E 56, 6002 (1997).
[7] R. Tomás, Ph.D. thesis, University of Valencia, 2003.

ESRF, ORM Vs N-BPM

rms β-beating of $3-5 \%$. Good agreement between the 2 techniques

ESRF, ORM Vs N-BPM Vs β from amp.

L. Malina, A. Franchi et al, unpublished

Beta-beating
Phase [\%] Amp [\%] ORM [\%]

betax	5	5	5.2
betay	3.4	3.4	3.4

Good agreement between all techniques

PETRA III, turn-by-turn, 2010

β-beating $=4-5 \%$, similar to LOCO measurement.

Summary \& Outlook

LHC has achieved an rms β-beating of $2-3 \%$, comparable to most light sources
The challenge lies ahead for HL-LHC ($\Delta \beta / \beta=200 \%$!)
SOLEIL and DIAMOND have achieved $0.3-0.4 \% \beta$-beating with LOCO
Still missing: Observe this $0.3 \% \beta$-beating with turn-by-turn techniques

