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Hamiltonian and Resonances

Introduction

Particles move with experience of electro-magnetic field of lattice elements
and space charge. Slow emittance growth arising in a high intensity
circular proton ring is studied.
@ We assume that the beam distribution is static, and each particle
moves in the filed of the static distribution.
@ A halo is formed by the nonlinear force due to the electro-magnetic
field of the beam itself.
@ The halo, which consists of small part of whole beam, does not affect
the electro-magnetic field.
@ Particle motion is described by a single particle Hamiltonian in the
field.
@ This picture is not self-consistent for a distortion of beam distribution
due to space charge force.
Practical issue in J-PARC MR; the beam loss of 0.1-1% during
~ 10,000 — 100, 000 turns.
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Hamiltonian and Resonances

Real issue: J-PARC MR operating point

Choice of operating point in J-PARC MR.
© New operating point (21.3,21.4) is better than present one
(22.40,20.75) in simulations and experiments.
@ Qualitative understanding of the reasons is necessary.

Beam loss due to space charge; green: better
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Figure: Tune scan of beam loss in a space charge simulation (SCTR).
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Hamiltonian and Resonances Action variable representation

Hamiltonian for a particle under the space charge force

Betatron variables with action variable/angle expression.

x(s) = /2B8x(s)Jx cos(px(s))
(dy(s))-

y(s) = 203,(s)Jy cos(py(s

(1)

Hamiltonian, which characterize one turn map, is separated by three parts
o linear betatron motion (uJ)
@ nonlinear component of the lattice magnets (Up)
@ space charge potential (U).
H = puJ + Up + Usc. (2)

Betatron phase advance per turn,

oH (U, Usc
— .+ (Uni + Usc)

fix = ¢X(5 + L) - ¢X(s) = TJX = Hx . (3)
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Hamiltonian and Resonances Action variable representation

Fourier expansion of Hamiltonian

H = pJ + Upo(J) + Z Umx,my(-/) exp(—imxpx — imy¢y)  (4)

My, my7#0

Tune shift, tune slope

First and second terms in RHS characterize shift, spread and slope of tune.

OH U
Hx =g — M 3 (5)

v

Resonance

Resonance occurs, when m,fi, + my i, = 2mn is satisfied at a amplitude
(Jx,r, Jy,R); effect of Um is accumulated turn by turn.
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Expansion around Resonance
J. L. Tennyson, AIP Conference proceedings, 87, 345 (1982).
Resonance condition

Mifix (S, y) + my fiy (Jx, Jy) = 2mn

Above condition gives a fixed point(line) in (Jx, J,) space for particle
motion.

Expansion of Hamiltonian around the fixed point

U, 1 92U
Uoo(J) = Uno(JRr) + =2|  (J—dr)+ (J—JR)'= =2 (J—JR)

oJ Jr 2 0JoJ Jr
(6)
Tune slope
(91/,' . al/j . 82U00 (7)
ot — 0 9J:0;
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RETNIIHIENIENMNESCNENISSI  Standard model

Canonical Transformation to Resonance base

Generating function for the canonical transformation

Fao(P, @) = (J,r + mcP1 + my2P2)dy + (Jy g + myPL + my 2P2) o, (8))

Resonance base (choose my » = 0, my o = 1)
Je—J
Pl = Xix,R ¢1 = mx¢x + myﬁby (9)

my

m
P>, = (Jy — Jy,R) - #(JX - JX,R) w2 = ¢y

Hamiltonian, Uy

A
2

82 Uoo 82 UOO 82 UOO
P? A= m? + mym m?
' 0J2 Y0404, Y 02

(10)

4

Uoo ~
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Standard model
Standard Model

Resonance term around the fixed point

Umn(J) = Um(JR) m = (my, my) (11)

Standardized Hamiltonian

A
H= §P12 + Um(JR) cos i1 (12)
32 Uoo 82 UOO 82 UOO
A= 2 N 2
oz M50, T ™ ok

Resonance width (full width)

_ [Um B Um
AP =4/ =1 Dy = 4myy |1 (13)

v
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Standard model
Standard Model
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Figure: Relation between (Jy, ¢x) and (P, 11).
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Space Charge Potential

Assume Gaussian beam in x,y,z

1_exp< x(s'5)2  y(s, s))

/ _ )\prp 202+4u 2024u
Use(s',s) = 5273/0 IR u\/ﬁ (14)
x(s';s) = V/2Bx(s')Jx cos(ipx(s', ) + ¢x(s)) +1(s)d(s)
y(s';s) = 1/2By(s")Jy cos(ioy (s, 5) + By (s))- (15)

where ¢, ,(s', 5) is the betatron phase difference between s and s’ and 7 is
the dispersion. d(s) is given function of s, not canonical variable.

Us(s) = 7{ ds' Une(5', 5) (16)
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Space Charge force and its Hamiltonian Tune shift and tune slope

U ) =~ 555 " §d / = W (17)
[1 —e Z (1) ///2(Wx)//(Vx)/o(Wy)] :
I=—o0
where t = u/02 and r, = Uﬁ/ag and
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Space Charge force and its Hamiltonian Tune shift and tune slope

Tune shift Space Charge Potential

OUoo _ Aptp
0 B3

| g )~ h(web(w)]. (20)

2nAvy, = ds

o2
O-X

Figure: Tune spread (Avy ,(Jx, Jy)) due to space charge force.

K. Ohmi (KEK) Space charge on measured beta Nov. 4-6, 2015, BeDi, Firenze 13 / 35



Space Charge force and its Hamiltonian Tune shift and tune slope

Tune slope Space Charge Potential

Voo ~ Aplp
02— B

| ey | { 3he) — 2hlm) + 3l o).
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Figure: Tune slope (U; = 9?Up/0J;0J;) due to space charge force.
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Space Charge force and its Hamiltonian Resonance terms

Resonance terms

Aplp

& d
— 23jéds/ u
By 0 20} 4+ uy/20% +u

Omy00m,0 — exp(—Wxy — wy) Z (—1)(meti+my)/2

|=—00

i1 /2 (W) (V) I, 2 (wy )&~ s =imvn] (21)

Umx,my(-/xa -/y) =

Figure: Uso(d = 05) and Uso(d = 0) due to space charge force.
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Lattice nonlinearity Tune shift and tune slppe

Tune shift due to lattice nonlinearity

One turn map is given by Taylar expansion of lattice elements.

Uoo(J) = 3.43103 x 10MJS +7.36914 x 10 J2.J, + 7.17029 x 10" J3 +2.34124 x 10" J1J]
1.70991 x 10"%J3.J, + 1.43961 x 10%J;} +4.48931 x 10*°J2.J3 +2.20917 x 10"°J3J;
2.50211 x 10837, + 613899..J7 + 3.33998 x 10"°.J2.J; 4 1.79716 x 10"*.J2.J]
7.07531 x 108J2.J7 + 809323.J2.J, + 1095.71.J7 4 7.58773 x 10"*J,.J]

5.7438 x 10" J,. ] + 4.55828 x 10°J,..J} + 650655..7,.J; + 2096.06],..J,

4.11283 x 10*3.J9 +4.00294 x 10'0J7 + 5.3027 x 107.J,) + 79924.4.J) + 1106.98.J7
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Figure: Tune spread (Avy ,(Jx, Jy)) due to lattice nonlinearity.
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The tune shift and slope due to lattice nonlinearity are one order smaller

Tune slope is given by the one turn map.
than those of space charge.

Tune slope due to lattice nonl
Figure: Tune slope (0?Hgo/0J?

nonlinearity.



mx my Jx
0 3.6E-05
0 3.6E-05
1 1.8E-05
2 0.0E+00
0 3.6E-05
1 1.8E-05
-1 1.8E-05
2 18E-05
-2 1.8E-05
0.0E+00
0 3.6E-05
1 1.8E-05
-1 1.8E-05
2 1.8E-05
-2 1.8E-05
3 18E-05
-3 1.8E-05
4 0.0E+00

O = = NN W WA O = = NMNNWO-—= N —
w

Table: Um,,m,(J) for lattice nonlinearity. U's are evaluated at J 3rd and 4-th
column. The suffix, BO,B and BR means lattices without errors, lattice with
measured beta and measured beta and coupling, K.Ohmi, HB2012.

K. Ohmi (KEK)

Superperiodicity

Jy
0.0E+00
0.0E+00
1.8E-05
3.6E-05
0.0E+00
1.8E-05
1.8E-05
1.8E-05
1.8E-05
3.6E-05
0.0E+00
1.8E-05
1.8E-05
1.8E-05
1.8E-05
1.8E-05
1.8E-05
3.6E-05

Space charge on measured beta

Um| (BO)
4.84E-08
2.47E-08
1.28E-25
5.55E-09
5.46E-08
2.09E-25
2.16E-25
4.66E-08
1.48E-07
1.42E-25
2.50E-07
1.93E-26
1.61E-26
2.49E-08
1.27E-08
2.52E-26
1.63E-26
1.20E-08

[um| (B)
1.88E-07
4.55E-08
1.67E-26
3.91E-09
1.29E-07
1.42E-26
4.52E-27
1.78E-07
2.72E-07
1.59E-26
2.51E-07
2.52E-27
497E-27
5.90E-09
8.40E-09
5.66E-27
1.10E-26
1.45E-08

[Um| (BR)
1.86E-07
4.66E-08
4.01E-09
2.69E-09
1.32E-07
1.42E-07
7.96E-08
1.83E-07
2.72E-07
1.10E-07
2.51E-07
6.80E-09
7.04E-10
5.58E-09
8.03E-09
3.56E-09
8.42E-10

142E-08
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Superperiodicity

J-PARC MR ring has superperiodicity of three. Resonances without
myvy + myv, = 3n is suppressed under the perfect superperidicity. It is
sufficient to consider 1/3 ring.

M = {exp <—Hé(1,) — H,(,lﬂ,)>]3 (22)

7.25

7.20§

=Y\
7. —
Do 705 710 7.5

Vy Vx

Figure: .Tune diagram near (v«/3,v,/3) = (7.467,6.917) and (7.13,7.143).
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Resonance terms under superperiodicity 3

New operating point, (vx,v,) = (21.39,21.43),
(vx/3,vy/3) = (7.13,7.143),

Figure: .Resonance terms near (vy,v,) = (21.39,21.43)
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Superperiodicity

Resonance terms under superperiodicity 3

Present operating point, (vy,v,) = (22.40,20.75),
(vx/3,1,/3) = (7.4667,6.9167),

Figure: Resonance terms near (vy,v,) = (22.40,20.75).

K. Ohmi (KEK) Space charge on measured beta Nov. 4-6, 2015, BeDi, Firenze 20 / 35



R T
Breaking of Superperiodicity

In real accelerator, superperiodicity is broken by various errors.
Non-structure resonances appear.

M = exp (_Hgg> - H,(,?) exp (_Hgg> - Hﬁ,z,)) exp (_Hg}g - H},l,)) (23)

(2 3) (23) _ (1) (1) H(23) (2,3)
+H + HY) + AHED + aHG (24)
20 80pcp o -
20.75 S § )
: 3y > ]
20.70p % e LA
>>‘ - = A [ F
2065 % -
20600 7 TR
NS
20,55 AL R A\ ) : ” ‘
8895 2230 2235 2240 3245 9250 213925 2130 2135 2140 2145 21.50

Vx

Figure: .Tune diagram near (vy,v,) = (22.40,20.75) axnd (21.39, 21.43)
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Superperiodicity Beta function measurement

Beta function measurement

Beta function distortion breaks superperiodicity. Beta function and phase
are measured by turn-by-turn monitor (and/or orbit response).

X1, Xo : turn-by-turn positions of monitor 1 and 2, mj;: transfer matrix
between 1 and 2.

/ 1 _ 1
(-l a)z) e
X mi2 -1 my X2

turn average of phase space position for x mode excitation
1 2
(5), () o
o )1 Jod) o) — oz 0

Betatron phase difference

cos(x2 — 1) = — L2 @21)
(1) 03)
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Beta function measurement

Measured beta function and phase

45 T 0.06 ,
40 ‘ s11dze55|1g rrrrrrrr 0.04 f} A
35 “ ‘ 0.02 [
30

g 25 00

o fg }r M u MH M M NM‘HMM .08 b VTP Ll Ml
10 w (i -0.06 ; H B 4
5 -0.08 |- ”
0 201 I ! ! | L

0 2oo 4oo eoo 800 100012001400 0 200 400 600 800 100012001400
s(m) s(m)

Figure: Measured beta function and phase for shot 112 (x) and 118 (y).
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Superperiodicity Beta function measurement

Space charge induced resonances with measured beta

Integration along s in Eq.(21) is performed using measured beta and
phase.

2e-07 T T T T 1.4e-08 T
1.86-07 - 53 - 1.26-08 |- gsjohg A
1.6e-07 |- 3/3 ------- A 1 (3,0,1) ------- .
1.40-07 | P i 16-08 | - 1
o 1207 / 1 = 809 | g b
B oL ] H
3ol R <
6e-08 |- / 1 4609 | p
4e08 4
2008 i 2e-09 - 1
ol v ol
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Jy (/Symbol mm Jy (/Symbol mm

Figure: Usgr and Uy for space charge force given by measured beta function and
phase.

o7 - 14008
== ] 7
18607 1 55 o 12008 | 23 |
16007 | 33 - ] -
14007 - 108 A
_ tze07 J = g0 - b
B te0r / 8 yd
= e / S 0 y ]
co08 / wosl ]
4008 / /!
2008/ w00y /
o
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J, (/Symbol mm J, (/Symbol mm

Figure: Usg1 and U,g for space charge force in the design lattice.
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Superperiodicity Beta function measurement

Lattice magnets induced resonances with measured beta

Lattice nonlinearity is factorized in each super period (SUP).

N—-1
M(sup) _ H M(S,‘_|_1,S,')€_:Hl(si): = exp <_H(()SUP) _ H;:,UP)) , (28)
i=0

M(sit1,si) = V7 (sip1) Uigr,i AU V(s)) (29)
= V7 (sit1) Vo(sis1)Mo(siv1, 51) Vg *(si) AU V(s7)

Figure: Real and imaginary part of Hyg for lattice nonlinearity in first SUP.
Measured beta and phase are contained in V and AU in Eq.(29).
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Simulation using the resonance Hamiltonian Without Synchrotron Motion

Integration of the resonance Hamiltonian

Simulation for emittance growth can be done using the resonance (Fourier
expanded) Hamiltonian.

H = pxdx + py Jy + Uo(Jx, Jy)
+Um,c(Jx, Jy) cos mp + Up, s(Jx, Jy) sin mo. (30)

where mo¢ = myox + my¢,,.
Symplectic transformation for above Hamiltonian is expressed by

n _ ) 8UO aUm,z: 8Um,s .
(ZSI - ¢I + TJ, + 8./, COs md) aJ, sin md)
Ji = Ji— mi(Uncsinmg — Up s cos me). (31)

v!here J and ¢_> are those after the transformation, and U,,’s are function of
J;i and ¢;. Second equation of Eq.(31) is implicit relation.
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Simulation using the resonance Hamiltonian Without Synchrotron Motion

Newton Raphson method for Symplectic integration

To solve (J, ), Newton-Raphson method is used.
fo=J —Jy — My (Um csinmgp — Uy s cos mg) =0

f, = Jy, — Jy — my(Unmcsin mg — Up, s cos mp) = 0. (32)

Iteration of Newton method is expressed by

<%>H+1:<%>H‘F_l(g)n~ (33)

where F is Jacobian matrix for f;; Fjj = 0f;/0J;, i,j = x,y.
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Simulation using the resonance Hamiltonian Without Synchrotron Motion

Simulation without synchrotron motion

" (21.39,21.43) |

Figure: Phase space trajectory for the model map with Usg. No synchrotron
motion. Left and right plots correspond to tune (22.40,20.75) and (21.39,21.43),
respectively.

Analytical estimate of the resonance width agrees well

/ 7
82Uoo/(9J2 \/ 10 =12 x 107 %m = 12um (34)
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K. Ohmi (KEK)

Rl
Simulation with synchrotron motion

Beam charge density depends on z. The resonance structure modulates
due to synchrotron oscillation.

N z(s)?
A Iy 35
(29) = Voo TP\ 202 ()
z = zgcos(ss/L) = zy cos(pusNturn) (36)

140

120
100

24,

2J,

0 02 04 06 08 1 0 02 04 06 08 1
Oy/2m 0,/2m

Figure: Phase space trajectory for the model map with Usg. Synchrotron tune,

vs = 0.002, zg = 0,. Left and right plots correspond to tune (22.40,20.75) and
(21.39,21.43), respectively
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With Synchrotron Motion
Emittance growth, diffusion of J

Initializing (J — Jo), uniform ¢, calculate evolution of spread of J.

AJ
AJ

o =4 M W s O o N

60‘um

P S S
0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000
turn turn

Figure: Diffusion of J. Left is for no synchrotron moiton. Right is for Synchrotron
tune, vs = 0.002, zy = o,.

Diffusion of J with synchrotron motion is larger than those without
synchrotron motion. All particles J, < 40um diffuse for finite vs, while
limited particles Jy = 30 and 40 have large AJ, but not diffusive.
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Simulation using the resonance Hamiltonian With Synchrotron Motion

Simulation under broken superperiodicity using measured
beta

Preliminary, only space charge
Very clean phase space.

100

z, Nlleas. B j
80 —————————— —
T 60 [—
2 ——]
3 4w
20
0 T I I I

0 0.2 0.4 0.6 0.8 1
/21

Figure: .Phase space trajectory for the model map based on measured beta.
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Simulation using the resonance Hamiltonian With Synchrotron Motion

Another example: Septum leakage field

* Measured B field

Measured leakage fieid of Septum |
Koseki, Igarashi, 2007/06/05

no0es , SR

oo | T s /

o004 ) I /- ByL(Tm) = ~2.2697 x 107" + 0.0021847x
g o 5 ] +0.20877%° + 3.90152%
oo

4 B/L(T/m) = 0.417 + 23.4z
» v
T K,=B"L = 0.0327m 2
oo 2= /(p/e) = 0.0327Tm

004 0.03 002 001 O 001 002 003 004

[R5 : WABERATTD 3 KM T 1 v |
Bx = 30 m at septum.

|Uso| = Ko82/? = 5.3Tm™1/2

AJy
Jx

=036 I
Jr=50%x10—"6
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Rl
Phase space trajectory with the Septum leakage field

24, (um)

Figure: .Phase space trajectory with the septum leakage field for no synchrotron
motion.

Synchrotron motion enhances the emittance growth.

This width is a crime level. It looks like cancer for me.
I(we) realized J-PARC was still under developing.
It can be say future potential.
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Summary

Summary

Emittance growth based on chaos near resonances is discussed.
Tune shift and slope for space charge and lattice is evaluated.
Resonance terms for space charge and lattice is evaluated.

Beta function, phase and x-y coupling have been measured in J-PARC
MR turn by turn monitors.

Resonance terms are evaluated by the measured beta and phase.
Resonance fixed point and width are determined by the tune slope
and resonance strength.

Simulation of a model based on the tune slope and resonance
strength is being performed.

Emittance growth is evaluated by combination with Synchrotron
motion

The results are preiminary yet for the emittance growth based on
measured beta.

Simulations for Multi-resonances will be performed.
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The End

Thank you for your attention
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