Impact of orbit distortions on EDM measurements

Marcel Rosenthal on behalf of the JEDI collaboration
2015-11-04 | Beam Dynamics meets Diagnostics, Florence, Italy

Outline

Introduction

- What are Electric Dipole Moments (EDMs)?
- How to measure them in in Storage Rings?
- What is planned for the Cooler Synchrotron COSY in Jülich?

Simulation Framework

- Transfer Maps for time-varying fields
- Benchmarking using spin oscillations in presence of time-varying fields

Studies towards EDM Measurements at COSY

- Polarization signal due to non-vanishing EDM
- Fake signals arising from misalignments

CP-Violating permanent EDMs

$\vec{E}^{\prime} \vec{B}$

EDM measurements in storage rings

> General idea:
> Inject polarised particles with spin aligned to momentum direction
> „Frozen Spin"-Technique: without EDM spin stays aligned to momentum
$>$ EDM couples to electric bending fields \rightarrow slow signal buildup
> All electric ring is concept for a final dedicated machine

Thomas-BMT-Equation

> Equation of spin motion for relativistic particles in electromagnetic fields:

$$
\begin{array}{l|c|c}
\frac{\mathrm{d} \overrightarrow{\mathrm{~S}}}{\mathrm{dt}}=\vec{\Omega}_{\mathrm{MDM}} \times \overrightarrow{\mathrm{S}}+\vec{\Omega}_{\mathrm{EDM}} \times \overrightarrow{\mathrm{S}} & \vec{\mu}=2(\mathrm{G}+1) \cdot \frac{\mathrm{e}}{2 \mathrm{~m}} \overrightarrow{\mathrm{~S}} \\
\vec{\Omega}_{\mathrm{MDM}}=-\frac{\mathrm{q}}{\gamma \mathrm{~m}}\left[(1+\mathrm{G} \gamma) \overrightarrow{\mathrm{B}}+\left(\mathrm{G} \gamma+\frac{\gamma}{1+\gamma}\right) \frac{\overrightarrow{\mathrm{E}} \times \vec{\beta}}{\mathrm{c}}-\frac{\mathrm{G} \gamma^{2}}{\gamma+1} \vec{\beta}(\vec{\beta} \cdot \overrightarrow{\mathrm{~B}})\right] & \overrightarrow{\mathrm{d}}=\eta \cdot \frac{\mathrm{e}}{2 \mathrm{mc}} \overrightarrow{\mathrm{~S}} \\
\vec{\Omega}_{\mathrm{EDM}}=-\frac{\mathrm{q}}{\mathrm{~m}} \frac{\eta}{2}\left[\frac{\overrightarrow{\mathrm{E}}}{\mathrm{c}}+\vec{\beta} \times \overrightarrow{\mathrm{B}}-\frac{\gamma}{\gamma+1} \vec{\beta}\left(\vec{\beta} \cdot \frac{\overrightarrow{\mathrm{E}}}{\mathrm{c}}\right)\right] & & { }^{-} \\
\hline \text { Comparison to equation of motion: } & \text { Proton } & 1.792847357 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}=\vec{\Omega}_{\mathrm{cyc}} \times \overrightarrow{\mathrm{p}} \\
& \vec{\Omega}_{\mathrm{cyc}}=-\frac{\mathrm{q}}{\gamma \mathrm{~m}}\left[\overrightarrow{\mathrm{~B}}_{\perp}+\frac{\overrightarrow{\mathrm{E}} \times \vec{\beta}}{\beta^{2} \mathrm{c}}\right]
\end{aligned}
$$

$>$ Comparison of $\vec{\Omega}_{\mathrm{MDM}}$ and $\vec{\Omega}_{\text {cyc }}$ for pure electric bend

$$
\begin{aligned}
& \vec{n}_{C O}: \text { vertical } \\
& v_{S}= \pm \frac{\left|\vec{\Omega}_{M D M}-\vec{\Omega}_{c y c}\right|}{\left|\vec{\Omega}_{c y c}\right|}= \pm \frac{G\left(\gamma^{2}-1\right)-1}{\gamma} \quad \text { (Sign fixed by orientation of } \vec{n}_{c o} \text {) }
\end{aligned}
$$

> Pure electric ring for proton frozen spin
> Combined ring (electric/magnetic) for deuteron frozen spin

Pure magnetic ring

- Comparison of $\vec{\Omega}_{\mathrm{MDM}}$ and $\vec{\Omega}_{\mathrm{cyc}}$ for pure magnetic bend

$$
\begin{aligned}
& \vec{n}_{C O} \text { : vertical } \\
& v_{s}= \pm \frac{\left|\vec{\Omega}_{M D M}-\vec{\Omega}_{c y c}\right|}{\left|\vec{\Omega}_{c y c}\right|}= \pm G \gamma
\end{aligned}
$$

> Frozen Spin Method not applicable in pure magnetic ring
> Different measurement method proposed

The Cooler Synchrotron COSY

Spin Tune / Spin Closed Orbit

> Spin motion on closed orbit at fixed location in static ring:

Spin closed orbit: $\vec{n}_{C O}$ Spin tune: v_{s} $\vec{s} \| \vec{n}_{c o}$ preserved
> EDM tilts spin closed orbit:

$$
\begin{aligned}
& \frac{\mathrm{d} \overrightarrow{\mathrm{~S}}}{\mathrm{dt}}=\vec{\Omega}_{\mathrm{MDM}} \times \overrightarrow{\mathrm{S}}+\vec{\Omega}_{\mathrm{EDM}} \times \overrightarrow{\mathrm{S}} \\
& \vec{\Omega}_{\mathrm{MDM}}=-\frac{\mathrm{q}}{\gamma \mathrm{~m}}[(1+\mathrm{G} \gamma) \overrightarrow{\mathrm{B}}] \\
& \vec{\Omega}_{\mathrm{EDM}}=-\frac{\mathrm{q}}{\mathrm{~m}} \frac{\eta}{2}[\vec{\beta} \times \overrightarrow{\mathrm{B}}]
\end{aligned}
$$

Spin Tune / Spin Closed Orbit II

> Spin motion on closed orbit at fixed location in static ring:

Spin closed orbit: $\vec{n}_{C O}$ Spin tune: v_{s} $\vec{s} \| \vec{n}_{c o}$ preserved
> EDM tilts spin closed orbit:

Fast oscillating vertical spin component S_{y} :
Amplitude: $A=\sin (\xi) \approx \frac{\eta \beta}{2 G}$
Order of magnitude (deuterons, $p \approx \frac{1 \mathrm{GeV}}{c}$)

$$
\begin{aligned}
& \boldsymbol{\eta}=\mathbf{1 0}^{-4}: \quad \boldsymbol{A} \approx \mathbf{0 . 1 5} \cdot \mathbf{1 0}^{-3} \\
& \left(\eta=10^{-4} \leftrightarrow d \approx 5 \cdot 10^{-19} \mathrm{ecm}\right)
\end{aligned}
$$

Spin resonance by RF field

> Place RF Wien filter at fixed location:

> Spin motion induced by RF Wien filter (radial E-field / vertical B-field)
$>$ Fields: $\quad B_{W F}=\hat{B}_{W F} \cdot \cos \left(\omega_{W F} \cdot t+\phi\right)$

$$
\hat{E}_{W F}=-\beta c \hat{B}_{W F}
$$

> Vanishing Lorentz force \rightarrow no EDM interaction: $\vec{\Omega}_{\text {EDM }}=0$
$>$ Spin rotation axis vertical, not parallel to $\vec{n}_{C o}$!
$>$ Resonant spin interaction: $\omega_{W F}=\omega_{\text {spin }}+K \cdot \omega_{\text {rev }}=\left(v_{s}+K\right) \cdot \omega_{\text {rev }}, K \in \mathbb{Z}$
> Accumulation of vertical spin signal

Outline

\square

Simulation Framework

- Transfer Maps for time-varying fields
- Benchmarking using spin oscillations in presence of time-varying fields

Framework

COSY

Lattice

m.rosenthal@fz-juelich.de

Armadillo

- linear algebra operations
- SVD, pseudo-inverse for orbit correction
- plotting
- storage (ROOT files/trees)
M. Berz, K. Makino et al.
- Calculator:
- Optical functions
- Closed orbit
- Spin tune
- Tracker:
- Static maps
- RF maps

COSY INFINITY

Simulations

> Long-term tracking required:
> Transfer maps allow for fast tracking and study of the optical system
> Solutions for equations of motion to arbritary order:

$$
\vec{z}_{f}=\mathcal{M}\left(\vec{z}_{i}\right), \quad \vec{S}_{f}=\mathcal{A}\left(\vec{z}_{i}\right) \cdot \vec{S}_{i}
$$

> Relate phase space and spin coordinates before and after element
> Static fields:

Same transfer map for all particles.
time-independent

> In case of time-varying fields, same map can not be reused in subsequent turns

Transfer Maps for RF fields

> Radiofrequency fields:
> Split element into 36 maps covering the 360° phase interval of the time-varying field

Each map contains terms, which also depend on the time of arrival

Benchmarking

> Use initially vertical polarized deuteron beam
> Excite oscillations by radiofrequency solenoid

> Data reproducible using map methods

Outline

\square
\square

Studies towards EDM Measurements at COSY

- Polarization signal due to non-vanishing EDM
- Fake signals arising from misalignments

Proposed measurement setup

> EDM experiment:
> Vector polarized deuteron beam
> Momentum: $970 \mathrm{MeV} / \mathrm{c}$
> Applied cooling to reduce emittances and momentum spread
> Initial polarization perpendicular to spin closed orbit
> Long spin coherence time required

> Measure buildup of a vertical polarization related to EDM

Without Wien filter
Fast oscillation of $S_{y}:$
$\eta=10^{-4}:$
$\boldsymbol{A} \approx \mathbf{0 . 1 5} \cdot \mathbf{1 0}^{-\mathbf{3}}$

$$
\begin{gathered}
\text { With Wien filter } \\
\text { Additionally, slow accumulation of } S_{y} \\
\eta=10^{-4}, \hat{B}_{W F}=0.1 \mathrm{mT}, l_{W F}=0.8 \mathrm{~m}: \\
\boldsymbol{\partial}\left\langle\boldsymbol{S}_{\boldsymbol{y}}\right\rangle / \boldsymbol{\boldsymbol { n }} \approx \mathbf{0 . 1 5} \cdot \mathbf{1 0}^{-\mathbf{8}}
\end{gathered}
$$

Polarization buildup induced by EDM

> Investigate spin motion on closed orbit
> Radiofrequency fields of the Wien filter:

$$
\begin{aligned}
& B_{W F}=\hat{B}_{W F} \cdot \cos \left(\omega_{W F} \cdot t+\phi\right) \\
& E_{W F}=\hat{E}_{W F} \cdot \cos \left(\omega_{W F} \cdot t+\phi\right)
\end{aligned}
$$

$$
\hat{B}_{W F}=0.1 \mathrm{mT} \quad \hat{E}_{W F}=-\beta c \hat{B}_{W F}
$$

Phase relation (EDM)

> Phase relation between spin and Wien filter field is important
$>\phi=0 \Leftrightarrow$ fields are maximal, when spin is longitudinal at Wien filter location

> Radial magnetic fields also lead to tilt of spin closed orbit
> Important sources:
> Vertically shifted quadrupole magnets
> Rolled dipole magnets
> Examine connection between orbit RMS and vertical spin signal

Misalignments II

> Radial magnetic fields also lead to tilt of spin closed orbit
> Important sources:
> Vertically shifted quadrupole magnets
> Rolled dipole magnets
>1. Dice random shifts of quadrupoles in vertical direction
> Gaussian distributed ($\mu=0, \sigma=\sigma_{y}$)

Misalignments III

> Radial magnetic fields also lead to tilt of spin closed orbit
> Important sources:
> Vertically shifted quadrupole magnets
> Rolled dipole magnets
> 2. Calculate Orbit Response Matrix and simulate an orbit correction
> ~20 correctors and ~ 30 BPMs per plane

Orbit changes

> Investigate different sets of misalignments separately

. What about the vertical spin accumulation?

> Phase relation depends on distributions of misalignments
> Discriminate on $\phi=0$

Buildup due to Misalignments

> Induced buildup by misalignments (no EDM)
> Vertical orbit deviations must be minimized to suppress this background

Quadrupole shifts
Dipole rolls

Comparison to EDM signal

> More complete set of misalignments (shifts, tilts, rolls)

Summary \& Outlook

> EDM measurements in storage rings very challenging
$>$ Accelerator \Leftrightarrow Experiment
> RF Wien filter method for magnetic ring:
> Strong background from MDM interactions due to misalignments

- Good orbit monitoring and control is essential
> Upgrade of orbit diagnosis system under consideration

> Looking forward to some interesting discussions!

Development of new BPMs

> Upgrade of orbit diagnosis and control required to suppress systematics
> BPM development on going:

Conventional capacitive BPM


```
Courtesy:
```

Courtesy:
Fabian Hinder (f.hinder@fz-juelich.de)
Fabian Hinder (f.hinder@fz-juelich.de)
Fabian Trinkel (f.trinkel@fz-juelich.de)

```
Fabian Trinkel (f.trinkel@fz-juelich.de)
```

New inductive BPM

First step to SQUID-based BPM system

