

Impact of orbit distortions on EDM measurements

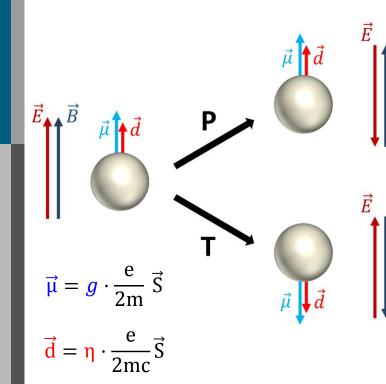
Marcel Rosenthal on behalf of the JEDI collaboration 2015-11-04 | Beam Dynamics meets Diagnostics, Florence, Italy

Outline

Introduction

- What are Electric Dipole Moments (EDMs)?
- How to measure them in in Storage Rings?
- What is planned for the Cooler Synchrotron COSY in Jülich?

Simulation Framework


- Transfer Maps for time-varying fields
- Benchmarking using spin oscillations in presence of time-varying fields

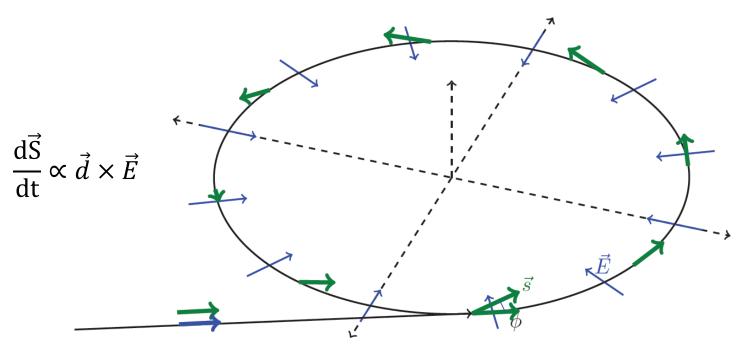
Studies towards EDM Measurements at COSY

- Polarization signal due to non-vanishing EDM
- Fake signals arising from misalignments

CP-Violating permanent EDMs

 $\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$

 $\mathbf{\mathcal{P}}: \mathcal{H} = -\,\vec{\boldsymbol{\mu}}\cdot\vec{\boldsymbol{B}} + \vec{\boldsymbol{d}}\cdot\vec{\boldsymbol{E}}$


 $\mathbf{T}: \mathcal{H} = -\,\vec{\boldsymbol{\mu}}\cdot\vec{\boldsymbol{B}} + \vec{\boldsymbol{d}}\cdot\vec{\boldsymbol{E}}$

- Charge separation (classical picture)
- Fundamental property
- Permanent EDMs of light hadrons are P- and T-violating
 - > CPT-Theorem: CP-Violation
- Known CP-Violation not sufficient to explain Matter-Antimatter-Asymmetry in universe
- Search for new sources of CP-Violation by measuring Electric Dipole Moments of charged hadrons in storage rings

Aitglied der Helmholtz-Gemeinscha

EDM measurements in storage rings

- General idea:
 - Inject polarised particles with spin aligned to momentum direction
 - "Frozen Spin"-Technique: without EDM spin stays aligned to momentum
 - ➤ EDM couples to electric bending fields → slow signal buildup
- All electric ring is concept for a final dedicated machine

Thomas-BMT-Equation

Equation of spin motion for relativistic particles in electromagnetic fields:

$$\frac{d\vec{S}}{dt} = \vec{\Omega}_{MDM} \times \vec{S} + \vec{\Omega}_{EDM} \times \vec{S}$$

$$\vec{\Omega}_{MDM} = -\frac{q}{\gamma m} \left[(1 + G\gamma)\vec{B} + \left(G\gamma + \frac{\gamma}{1 + \gamma} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right] \qquad \vec{d} = \eta \cdot \frac{e}{2mc} \vec{S}$$

$$\vec{\Omega}_{EDM} = -\frac{q}{m} \frac{\eta}{2} \left[\vec{E} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\mu} = 2(G+1) \cdot \frac{e}{2m} \vec{S}$$

$$\vec{\mathbf{d}} = \mathbf{\eta} \cdot \frac{\mathbf{e}}{2\mathbf{m}\mathbf{c}} \vec{\mathbf{S}}$$

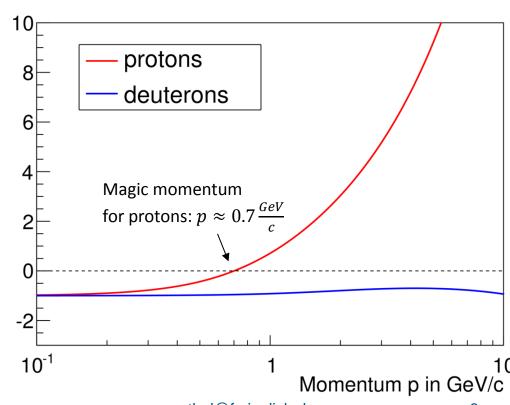
G **Proton** 1.792847357 -0.142561769 Deuteron

Comparison to equation of motion:

$$\frac{d\vec{p}}{dt} = \vec{\Omega}_{cyc} \times \vec{p}$$

$$\vec{\Omega}_{cyc} = -\frac{q}{\gamma m} \left[\vec{B}_{\perp} + \frac{\vec{E} \times \vec{\beta}}{\beta^2 c} \right]$$

Spin closed orbit: \vec{n}_{CO} Spin tune: ν_s $\vec{S} \parallel \vec{n}_{CO}$ preserved

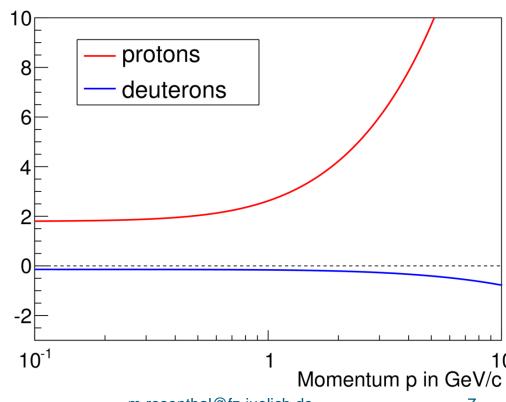

Pure electric ring

Comparison of \$\overline{\Omega}_{MDM}\$ and \$\overline{\Omega}_{cyc}\$ for pure electric bend

$$\vec{n}_{CO}$$
: vertical $v_s = \pm \frac{|\vec{\Omega}_{MDM} - \vec{\Omega}_{cyc}|}{|\vec{\Omega}_{cyc}|} = \pm \frac{G(\gamma^2 - 1) - 1}{\gamma}$ (Sign fixed by orientation of \vec{n}_{co})

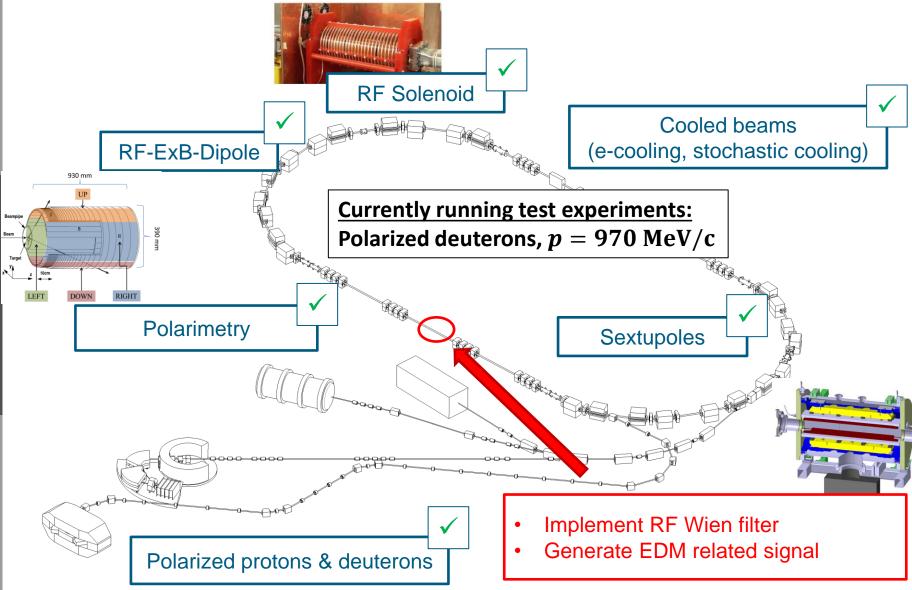
- Pure electric ring for proton frozen spin
- Combined ring (electric/magnetic) for deuteron frozen spin

Pure magnetic ring



> Comparison of $\overrightarrow{\Omega}_{MDM}$ and $\overrightarrow{\Omega}_{cyc}$ for pure magnetic bend

$$\vec{n}_{CO}$$
: vertical $u_s = \pm \frac{|\vec{\Omega}_{MDM} - \vec{\Omega}_{cyc}|}{|\vec{\Omega}_{cyc}|} = \pm G\gamma$


(Sign fixed by orientation of \vec{n}_{co})

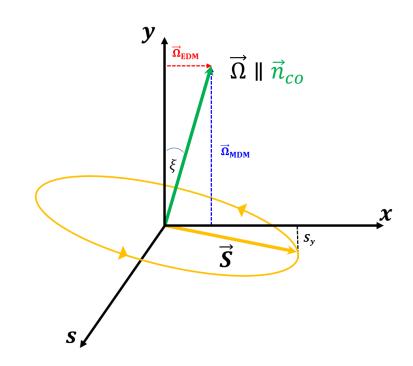
- Frozen Spin Method not applicable in pure magnetic ring
- Different measurement method proposed

The Cooler Synchrotron COSY

Spin Tune / Spin Closed Orbit

Spin motion on closed orbit at fixed location in static ring:

Spin closed orbit: \vec{n}_{CO} Spin tune: ν_{s}


 $\vec{S} \parallel \vec{n}_{CO}$ preserved

> EDM tilts spin closed orbit:

$$\frac{d\vec{S}}{dt} = \vec{\Omega}_{MDM} \times \vec{S} + \vec{\Omega}_{EDM} \times \vec{S}$$

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{\gamma m} [(1 + G\gamma)\vec{B}]$$

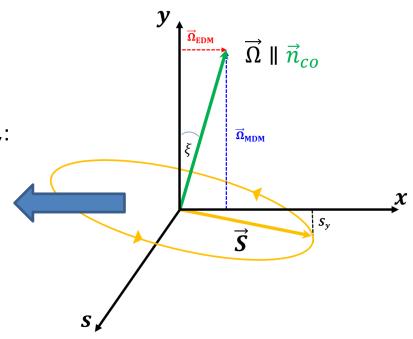
$$\vec{\Omega}_{EDM} = -\frac{q}{m} \frac{\eta}{2} [\vec{\beta} \times \vec{B}]$$

Spin Tune / Spin Closed Orbit II

Spin motion on closed orbit at fixed location in static ring:

Spin closed orbit: \vec{n}_{CO} Spin tune: ν_s

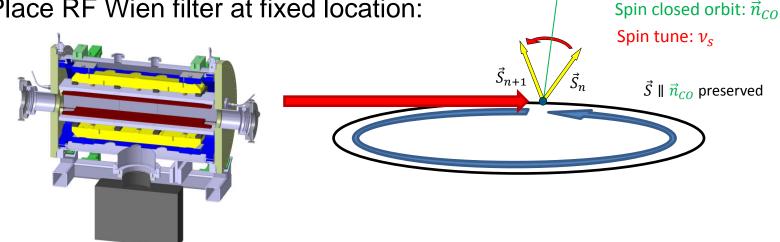
 $\vec{S} \parallel \vec{n}_{CO}$ preserved


EDM tilts spin closed orbit:

Fast oscillating vertical spin component S_{ν} :

Amplitude: $A = \sin(\xi) \approx \frac{\eta \beta}{2G}$

Order of magnitude (deuterons, $p \approx \frac{1 GeV}{c}$)


$$\eta = 10^{-4}: A \approx 0.15 \cdot 10^{-3}$$
 $(\eta = 10^{-4} \leftrightarrow d \approx 10^{-19} e \ cm)$

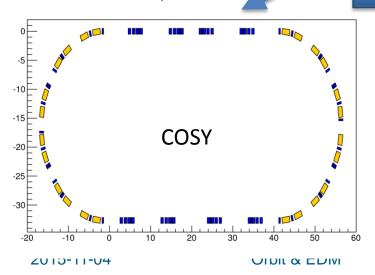
Spin resonance by RF field

Place RF Wien filter at fixed location:

- Spin motion induced by RF Wien filter (radial E-field / vertical B-field)
 - Fields: $B_{WF} = \hat{B}_{WF} \cdot \cos(\omega_{WF} \cdot t + \phi)$ $\hat{E}_{WF} = -\beta c \hat{B}_{WF}$ $E_{WF} = \hat{E}_{WF} \cdot \cos(\omega_{WF} \cdot t + \phi)$
 - ► Vanishing Lorentz force \rightarrow no EDM interaction: $\overrightarrow{\Omega}_{EDM} = 0$
 - > Spin rotation axis vertical, not parallel to \vec{n}_{CO} !
 - ► Resonant spin interaction: $\omega_{WF} = \omega_{spin} + K \cdot \omega_{rev} = (\nu_s + K) \cdot \omega_{rev}$, $K \in \mathbb{Z}$
 - Accumulation of vertical spin signal

Outline

Simulation Framework


- Transfer Maps for time-varying fields
- Benchmarking using spin oscillations in presence of time-varying fields

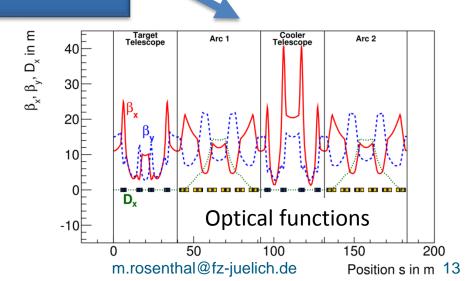
Framework

COSY **INFINITY**

M. Berz, K. Makino et al.

- Calculator:
 - **Optical functions**
 - Closed orbit
 - Spin tune
- Tracker:
 - Static maps
 - RF maps

COSY Lattice

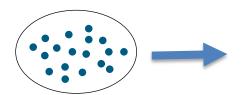


COSY Toolbox

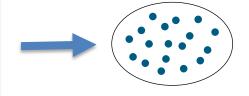
Armadillo

- linear algebra operations
- SVD, pseudo-inverse for orbit correction
- plotting
- storage (ROOT files/trees)

ROOT


Simulations

- Long-term tracking required:
 - Transfer maps allow for fast tracking and study of the optical system
- Solutions for equations of motion to arbritary order:


$$\vec{z}_f = \mathcal{M}(\vec{z}_i), \quad \vec{S}_f = \mathcal{A}(\vec{z}_i) \cdot \vec{S}_i$$

- Relate phase space and spin coordinates before and after element
- Static fields:

Same transfer map for all particles.

time-independent

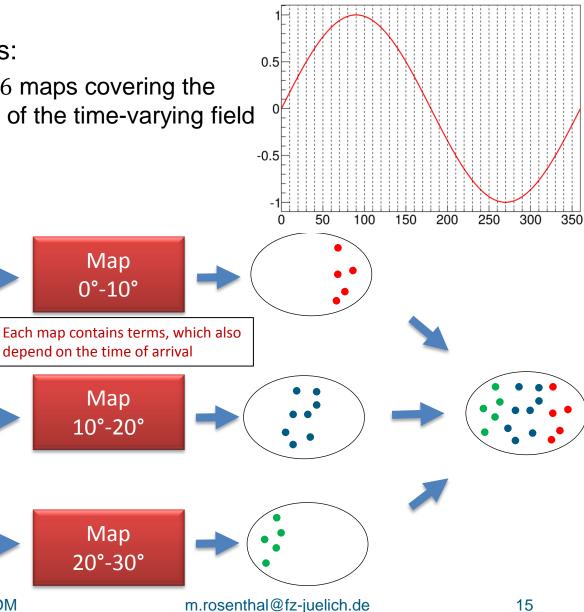
In case of time-varying fields, same map can not be reused in subsequent turns

Transfer Maps for RF fields

> Split element into 36 maps covering the 360° phase interval of the time-varying field

Orbit & EDM

Map


0°-10°

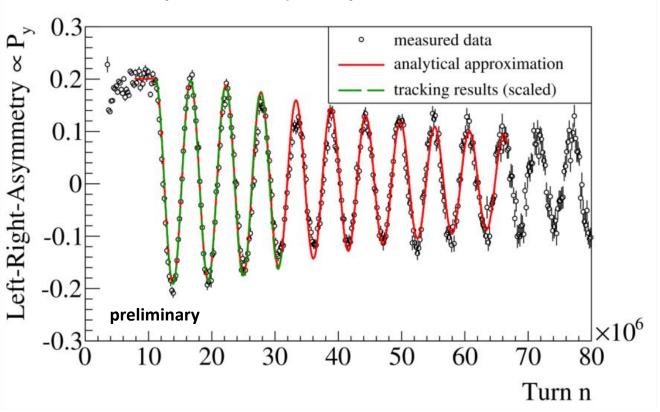
depend on the time of arrival

Map

10°-20°

Map 20°-30°

Color code expresses


2015-11-04

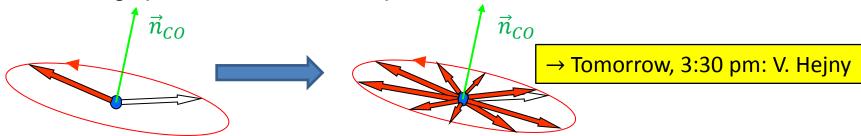
time of arrival

Benchmarking

- Use initially vertical polarized deuteron beam
- Excite oscillations by radiofrequency solenoid

Data reproducible using map methods

Outline


Studies towards EDM Measurements at COSY

- Polarization signal due to non-vanishing EDM
- Fake signals arising from misalignments

Proposed measurement setup

- EDM experiment:
 - Vector polarized deuteron beam
 - Momentum: 970 MeV/c
 - Applied cooling to reduce emittances and momentum spread
- Initial polarization perpendicular to spin closed orbit
 - Long spin coherence time required

Measure buildup of a vertical polarization related to EDM

Without Wien filter

Fast oscillation of S_{y} :

$$\eta = 10^{-4}$$
: $A \approx 0.15 \cdot 10^{-3}$

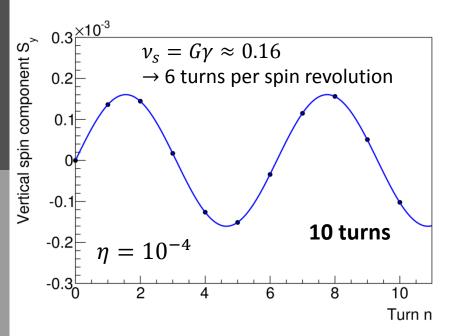
With Wien filter

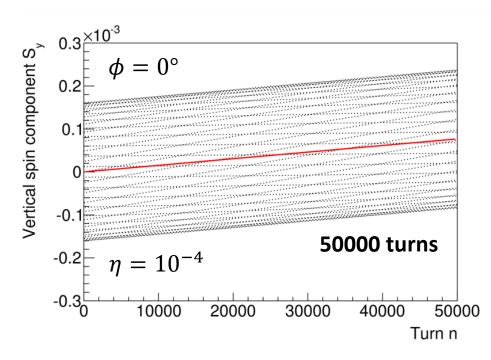
Additionally, slow accumulation of S_{y}

$$\eta = 10^{-4}, \hat{B}_{WF} = 0.1 \, mT, l_{WF} = 0.8 \, \text{m}:$$

 $\partial S_{\nu}/\partial n \approx 0.15 \cdot 10^{-8}$

Polarization buildup induced by EDM

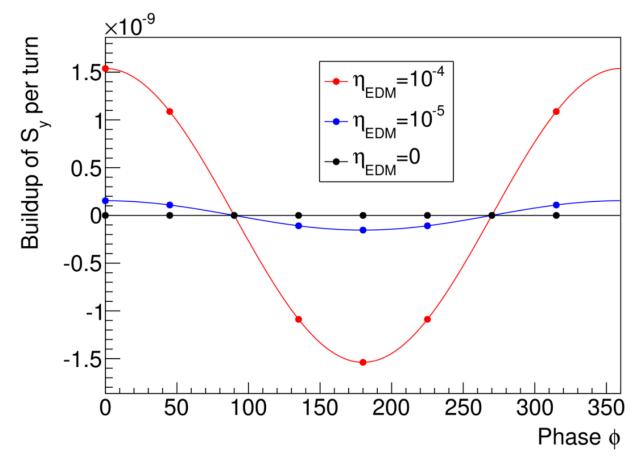



- Investigate spin motion on closed orbit
- > Radiofrequency fields of the Wien filter:

$$B_{WF} = \hat{B}_{WF} \cdot \cos(\omega_{WF} \cdot t + \phi)$$

$$E_{WF} = \hat{E}_{WF} \cdot \cos(\omega_{WF} \cdot t + \phi)$$

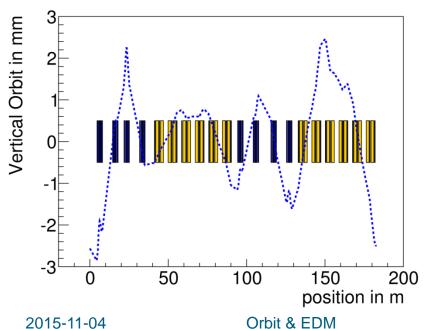
$$\hat{B}_{WF} = 0.1 \text{ mT}$$
 $\hat{E}_{WF} = -\beta c \hat{B}_{WF}$

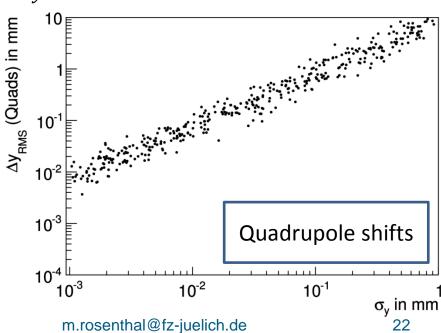


Phase relation (EDM)

- Phase relation between spin and Wien filter field is important
 - $\phi = 0 \Leftrightarrow$ fields are maximal, when spin is longitudinal at Wien filter location

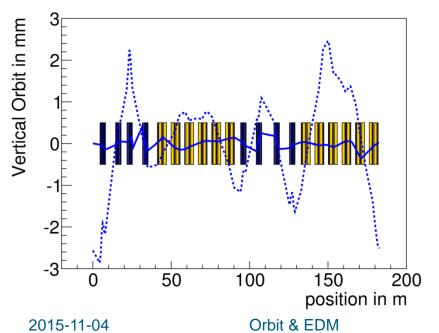
Misalignments

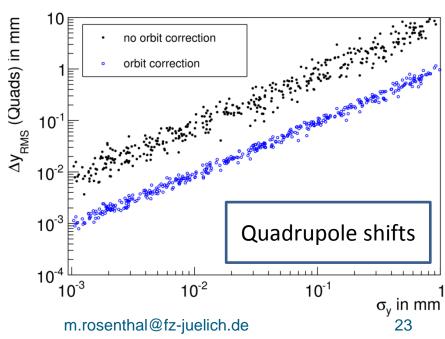



- Radial magnetic fields also lead to tilt of spin closed orbit
- Important sources:
 - Vertically shifted quadrupole magnets
 - Rolled dipole magnets
- Examine connection between orbit RMS and vertical spin signal

Misalignments II

- Radial magnetic fields also lead to tilt of spin closed orbit
- Important sources:
 - Vertically shifted quadrupole magnets
 - Rolled dipole magnets
- 1. Dice random shifts of quadrupoles in vertical direction
 - > Gaussian distributed ($\mu = 0$, $\sigma = \sigma_y$)



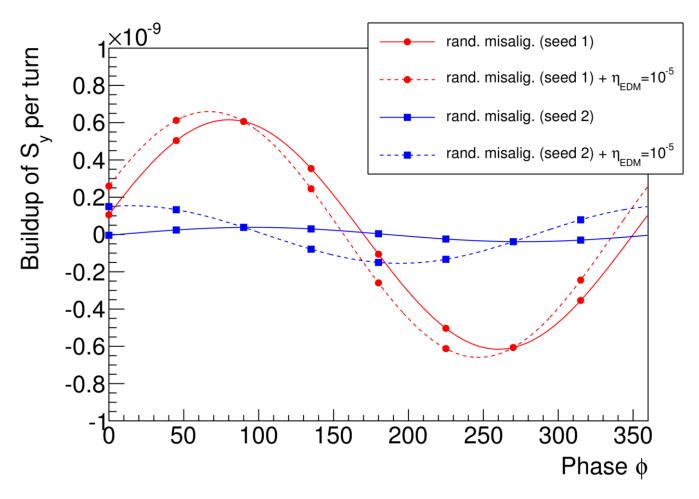


Misalignments III

- Radial magnetic fields also lead to tilt of spin closed orbit
- Important sources:
 - Vertically shifted quadrupole magnets
 - Rolled dipole magnets
- 2. Calculate Orbit Response Matrix and simulate an orbit correction
 - > ~20 correctors and ~30 BPMs per plane



Orbit changes


Investigate different sets of misalignments separately

What about the vertical spin accumulation?

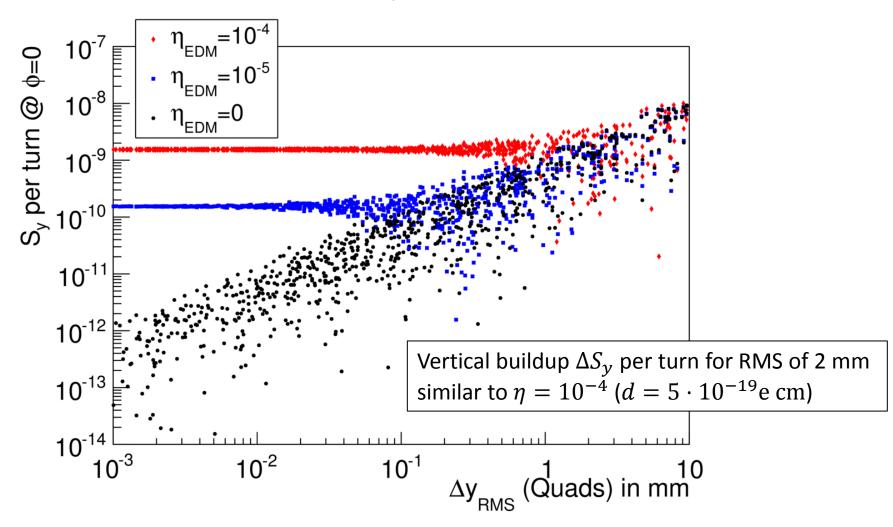
Phase relation (Misalignments)



- Phase relation depends on distributions of misalignments
- ightharpoonup Discriminate on $\phi = 0$

Buildup due to Misalignments

- Induced buildup by misalignments (no EDM)
- Vertical orbit deviations must be minimized to suppress this background


Quadrupole shifts

Dipole rolls

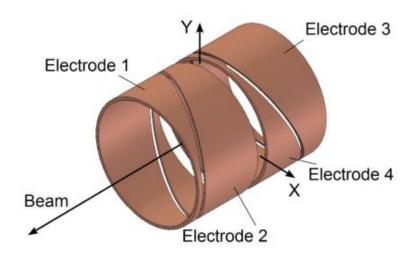
Comparison to EDM signal

More complete set of misalignments (shifts, tilts, rolls)

Summary & Outlook

- EDM measurements in storage rings very challenging
- ➤ Accelerator ⇔ Experiment
- RF Wien filter method for magnetic ring:
 - Strong background from MDM interactions due to misalignments
 - Good orbit monitoring and control is essential
 - Upgrade of orbit diagnosis system under consideration

Looking forward to some interesting discussions!



Development of new BPMs

- Upgrade of orbit diagnosis and control required to suppress systematics
- BPM development on going:

Conventional capacitive BPM

Courtesy:

Fabian Hinder (f.hinder@fz-juelich.de) Fabian Trinkel (f.trinkel@fz-juelich.de)

New inductive BPM

First step to SQUID-based BPM system