Polarimetry for monitoring long coherent spin precession and polarization based feedback

Volker Hejny
Forschungszentrum Jülich
on behalf of the JEDI Collaboration

Motivation

Planar magnetic and/or electric ring:

- invariant spin axis vertical
- spin in horizontal plane: precession around vertical axis

Motivation

Planar magnetic and/or electric ring:

- invariant spin axis vertical
- spin in horizontal plane: precession around vertical axis special case:
frozen spin $\rightarrow f_{\text {precession }}=f_{\text {revolution }}$
- first goal:
establish, maintain and monitor long coherent spin precession

Cooler Synchrotron COSY

COSY provides cooled \& polarized protons and deuterons with $\mathrm{p}=0.3-3.7 \mathrm{GeV} / \mathrm{c}$

Experimental setup

1. inject and accelerate vertically polarized deuterons to $p=1 \mathrm{GeV} / \mathrm{c}$

solenoid
EDDA polarimeter

Experimental setup

1. inject and accelerate vertically polarized deuterons to $p=1 \mathrm{GeV} / \mathrm{c}$
2. bunch and (pre-)cool

Experimental setup

1. inject and accelerate vertically polarized deuterons to $p=1 \mathrm{GeV} / \mathrm{c}$
2. bunch and (pre-)cool
3. turn spin by means of a RF solenoid into horizontal plane

spin flip
rf
solenoid

Experimental setup

1. inject and accelerate vertically polarized deuterons to $p=1 \mathrm{GeV} / \mathrm{c}$
2. bunch and (pre-)cool
3. turn spin by means of a RF solenoid into horizontal plane
4. extract beam slowly (within 100-1000 s) onto a carbon target, measure asymmetry and precisely determine spin precession
spin tune:

$$
\left|v_{s}\right|=|\gamma \mathrm{G}|=\frac{\text { spin precessions }}{\text { particle turn }}=\frac{f_{\mathrm{prec}}}{f_{\mathrm{rev}}} \approx \frac{120 \mathrm{kHz}}{750 \mathrm{kHz}} \approx 0.16
$$

Polarimetry

- reaction: elastic d+C scattering
- up/down asymmetry
$\propto P_{x} \quad$ projection on x-axis
$\propto P_{y} \quad$ projection on y-axis

Asymmetry measurement

Detector signal

$$
\begin{aligned}
N^{\text {up,down }}= & 1 \pm P A \sin \left(2 \pi \cdot f_{\mathrm{prec}} t\right) \\
= & 1 \pm P A \sin \left(2 \pi \cdot v_{s} n_{\text {turns }}\right) \\
& \text { P: polarisation, A: analysing power }
\end{aligned}
$$

Asymmetry

$$
\varepsilon=\frac{N^{u p}-N^{d o w n}}{N^{u p}+N^{d o w n}}=P A \sin \left(2 \pi \cdot v_{s} n_{\text {turns }}\right)
$$

Challenges

- precession frequency $f_{\text {prec }} \approx 120 \mathrm{kHz}$
- $v_{s} \approx-0.16 \rightarrow 6$ turns / precession
- event rate $\approx 5000 \mathrm{~s}^{-1} \rightarrow 1$ hit / 25 precessions
\rightarrow no direct fit of the rates

Asymmetry measurement

single
reference clock
„time stamping"

\longrightarrow beam revolutions: counting turn number n \downarrow
\longrightarrow assign turn number $n \rightarrow$ phase advance $\varphi_{s}=2 \pi v_{s} n$
true v_{S} a priori not known

$$
\text { for intervals of } \begin{gathered}
\Delta n=10^{6} \text { turns: } \varphi_{s} \rightarrow \varphi_{s} \bmod 2 \pi \\
\downarrow
\end{gathered}
$$

scan v_{s} in some interval around $v_{s}=\gamma G$

see: "Measuring the polarization of a rapidly precessing deuteron beam" Phys.Rev. STAB 17, 052803 (2014)

Asymmetry measurement

single
reference clock
„time stamping"

\longrightarrow beam revolutions: counting turn number n
\longrightarrow assign turn number $n \rightarrow$ phase advance $\varphi_{s}=2 \pi v_{s} n$
true v_{s} a priori not known

$$
\text { for intervals of } \begin{gathered}
\Delta n=10^{6} \text { turns: } \varphi_{s} \rightarrow \varphi_{S} \bmod 2 \pi \\
\downarrow
\end{gathered}
$$

scan v_{s} in some interval around $v_{s}=\gamma G$

see: "Measuring the polarization of a rapidly precessing deuteron beam" Phys.Rev. STAB 17, 052803 (2014)

Application: spin coherence time (SCT)

Ensemble of $\approx 10^{9}$ deuterons: coherent precession needed!

- unbunched beam: $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \Rightarrow$ decoherence in <1 s
- bunching: eliminate effects on $\frac{\Delta p}{p}$ in $1^{\text {st }}$ order $\rightarrow \tau \approx 20 \mathrm{~s}$
- correcting higher order effects using sextupoles and (pre-) cooling $\rightarrow \tau \approx 1000 \mathrm{~s}$

Application: spin coherence time (SCT)

Ensemble of $\approx 10^{9}$ deuterons: coherent precession needed!

- unbunched beam: $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \Rightarrow$ decoherence in <1 s
- bunching: eliminate effects on $\frac{\Delta p}{p}$ in $1^{\text {st }}$ order $\rightarrow \tau \approx 20 \mathrm{~s}$
- correcting higher order effects using sextupoles

$$
\text { and (pre-) cooling } \rightarrow \tau \approx 1000 \mathrm{~s}
$$

Application: SCT vs chromaticity

chromaticity: $\Delta Q_{x, y} / \Delta p$
($Q_{x, y}$: betatron tunes, p : momentum)

- also controlled by sextupoles (MXS, MXG: different sextupole families in COSY)

Application: precise determination of \boldsymbol{v}_{s}

Monitoring phase of asymmetry (v_{s} fixed):

phase

see: Phys.Rev.Lett. 115, 094801 (2015)

Application: precise determination of v_{s}

- spin tune v_{s} can be determined to $\sigma_{v_{s}} \approx 10^{-8}$ in $\Delta t \approx 2 \mathrm{~s}$
- average $\overline{v_{s}}$ in 1 cycle (≈ 100 s) determined to $\sigma_{v_{s}} \approx 10^{-10}$
- tool for: study long term stability of the ring dedicated online feedback systems probing ring imperfections
see: Phys.Rev.Lett. 115, 094801 (2015)

Spin tune: feedback system

Wien filter: signal build up (M. Rosenthal)

Spin tune: feedback system

Phase variation per cycle time t [s]

Wien filter: signal build up (M. Rosenthal)

Spin tune: feedback system

Phase variation per cycle time t [s]

Wien filter: signal build up (M. Rosenthal)

Variation cycle-by-cycle

Spin tune: feedback system

Challenges:

- maintain phase relation between precession \& rf ExB dipole
- maintain resonance condition for rf solenoid \& ExB rf dipole
- maintain frozen spin condition in a future dedicated ring

Idea:

- control and stabilize spin tune via COSY rf cavity:

$$
\frac{\Delta v_{s}}{v_{s}}=\frac{\Delta \gamma}{\gamma}=\beta^{2} \frac{\Delta p}{p}=\frac{\beta^{2}}{\eta} \frac{\Delta f}{f}
$$

- control relative phases by accelerating/decelerating spin precession

Spin tune: feedback system

Spin tune: probing ring imperfections

- EDM causes tilt of spin closed orbit
- tilt can also be caused by ring imperfections (e.g. field imperfections)

effect on spin tune

Spin tune: probing ring imperfections

- spin tune is perturbed by small kicks $\sim a$ by ring imperfections

$$
v_{0}=\gamma G+O\left(a^{2}\right)
$$

- idea: probe imperfections by adding artificial imperfections spin kicks χ_{1}, χ_{2} by means of e-cooler solenoids
- measure spin tune change
- expectation

$$
\Delta v_{s}=v_{s}\left(\chi_{1}, \chi_{2}\right)-v_{0}
$$

$$
\begin{aligned}
& \Delta v_{s} \propto\left(y_{ \pm}-a_{ \pm}\right)^{2} \\
& y_{ \pm}=\frac{1}{2}\left(\chi_{1} \pm \chi_{2}\right)
\end{aligned}
$$

$a_{ \pm}$: in-plane ring imperfections

Spin tune: probing ring imperfections

Spin tune: probing ring imperfections

spin tune map:

- parabolic behavior confirmed
- saddle point provides information on spin kicks by in-plane ring imperfections

Outlook: Polarimeter development

Status:

- EDDA is in operation since about 20 years
- acceptance limits polarimeter efficiency
crucial for
feedback system

Outlook: Polarimeter development

Range Hodoscope: 3×24 elements (10 cm) 2×24 elements (15 cm) pizza shaped pC , dC analyzing powers at various beam momenta using the WASA-at-COSY forward detector

- development of a dedicated polarimeter for high precision EDM measurements

Summary

- Polarimetry + time stamping (single long range TDC)
\rightarrow resolving fast spin precession
\rightarrow extract polarization
\rightarrow determine spin tune with high precision
- Applications
\rightarrow tune accelerator for long spin coherence times (≥ 1000 s)
\rightarrow stabilize spin tune and maintain phase lock to external rf signals (solenoid, ExB dipole), "feedback system"
\rightarrow study spin tune response of accelerator parameters (field imperfections, orbit changes, ...)
- Upcoming activities
\rightarrow provide analyzing powers for pC and dC scattering
\rightarrow development of a dedicated polarimeter for EDM measurements

Jülich Electric Dipole Moment Investigations:

- ≈ 100 members:

Aachen, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakau, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...

- see http://collaborations.fz-juelich.de/ikp/jedi

