

STT News & Status

Peter Wintz (FZ Jülich) for the STT group

LII. PANDA CM Giessen, TRK session, Mar-18th, 2015

ied der Helmholtz-Gemeinsc

STT Status

- News
- Project Plan
- Construction Status
- Plans 2015
- Review Beam Tests 2014
- Summary

itglied der Helmholtz-Gemeinsc

News - Personnel

- Sedigheh Jowzaee finished her Ph.D. (Jerzy Smyrski's group, Jagiell. Univ.), PID with time-over-threshold simulations, COSY-TOF straw tracker, pp →pKλ analysis
- Next: Dominik Przyborowski (Ph.D. thesis, AGH Krakov), Harout
 Ohannessian (master thesis, FZJ)
- Alexandros Apostolou (Johann's group, KVI Groningen) started his Ph.D. research visit in Jülich, working on STT, beam data analysis
- Solmaz Vejdani (Johann's group, KVI Groningen) joined STT group, participates in next beam time

Upcoming Events

- March-25/26th: Frascati-Juelich WShop, STT+CFrame prototype assembly
- April-9/10th: PANDA DAQT-FEE Wshop at GSI
- April-27/28th: PANDA Mechanical WShop at GSI
- May 4th-10th: test beam week at COSY (STT + FT), BigKarl beam area

- Summer: installation of STT test systems in new beam area (COSY-TOF)
- Sep/Nov: further beam tests planned (proton / deuteron), larger test setups
- Q4 / 2015: Pre-series test system assembly, one STT sector, ~ 700 straws
- Q1 / 2016: Pre-series STT sector with test beam

Project Plan

- System timelines separated in construction schedule & installation schedule
- STT construction timelines below (milestone loaded schedule)
- Propose to extend off-site testing Q2/ 2018 → Q2-Q3/ 2018
 - option for full pre-commissioning of STT with beam off-site
 - Test all channels & replace faulty readout boards, full access
 - Tune readout settings, thresholds with beam (most time consuming task)
- Then concentrate on mechanical installation of STT system at FAIR
- Definition of installation procedures and schedule in progress ...

Subsyste	Subsystem			2015				2016		2017			2018			2019						
			Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Straw Tube	e Tracker (STT)																					
R&D, M3: 1	TDR approved																					
Tendering,	Tendering, Contract Preparation, M4: Contracts signed																					
Construction	Construction design, M7: Planning completed																					
Prototype/F	Prototype/Pre-series construction, M8: Prototype/Pre-series testing complete, production readiness																					
Component	Component construction & testing, Module assembly & testing, M9: Acceptance test completed																					
Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, M10: Ready for installation																						
ession iviarch-	18th 2015						Pot	or Wii	niz													

STT Status - Mech. Construction

- STT construction & system design
 - Straw mass production ongoing
 - Profile plate for straw module gluing ordered (new straw pitch 10.14mm)
 - Next step: straw module gluing (quad-layers)
- Overall system design
 - Assembly of STT / Central Frame prototype (Frascati/Juelich)
 - Next: mounting & alignment of straw modules in STT frame
- General installation, rack positions, cabling scheme .. ongoing
- Set up new test & assembly area in Juelich
 - COSY-TOF beam area, in-beam tests, cosmic tests
 - Option: STT set up area ..

glied der Helmholtz-Gemeinsc

STT Status - Electronic Readout

- Setting up larger-scale readout system ongoing (~ 700 ch)
- New PASTTREC(v1) ASIC readout chip
- FE-board produced, chips bonded, functional tests done
- TRB readout system set up, 10× TRB boards, crate architecture, ...
- New: ASIC setting/control by FPGA in TRB
 - → Reports by Dominik & Pawel
- FADC readout system, FEE-free layout design (HV supply & pre-amp backend), system architecture defined, rack design, connectors ongoing

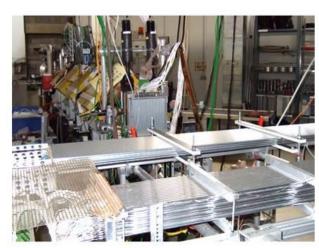
Mitglied der Helmholtz-Gemeinschaft

Beam Requests for 2015

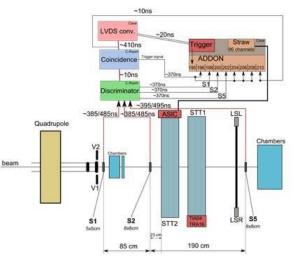
Beam time	Beam	Momentum (GeV/c)	Area	Setups
1 week (May 4 th -10 th)	Proton	3.0, 0.8, 0.6	Big Karl	Existing (2014) + new readout, PANDA-FT prototype
2 weeks (in late Q3)	Proton	3.0, 2.0, 1.3, 1.0, 0.8, 0.6	COSY- TOF	Larger straw and readout setups
1 week (in Q4)	Deuteron	2.0, 1.3, 1.0	COSY- TOF	Same as before

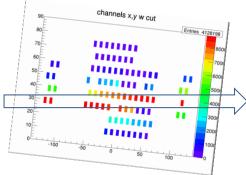
glied der Helmholtz-Gemeinsch

Beam Requests for 2015


Beam time	Beam	Momentum (GeV/c)	Area	Setups			
1 week (May 4 th -10 th)	Proton	3.0, 0.8, 0.6	Big Karl	Existing (2014) + new readout, PANDA-FT prototype			
2 weeks (in late Q3)	Proton	3.0, 2.0, 1.3, 1.0, 0.8, 0.6		Larger straw and readout setups			
1 week (in Q4)	Deuteron	2.0, 1.3, 1.0	COSY- TOF	Same as before			

- Beam test week in May approved, STT + FT tests
- Beam time for 2nd half 2015 decided at next CBAC meeting (Jun-29/30th)


Beam Test Series In 2014


- 3x 1 week (July / Sep / Dec) at COSY Big Karl beam area
- Coverage of large dE/dx region, large signal dynamic range for PID test
 - 6× different proton momenta (0.6, 0.8, 1.0, 1.3, 2.0, 3.0 GeV/c)
 - 3× different deuteron momenta (1.0, 1.3, 2.0 GeV/c)
- 2 Straw setups for both readouts: time-over-threshold / amplitude readout
- Additional scintillators, straw chambers, GEM for triggering & beam monitor

Two straw test setups in Big Karl area. Additional straw and GEM detectors for beam monitoring (beam from back).

Sketch of setups and data-acquisition for the ASIC/TRB readout (beam from the left).

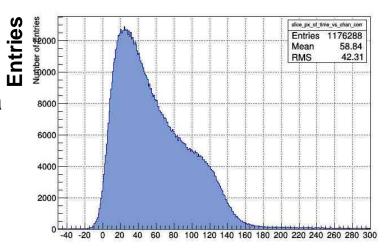
Hitmap for one straw setup. Boxes mark straw positions and hit rate by color. Arrow indicates the beam position.

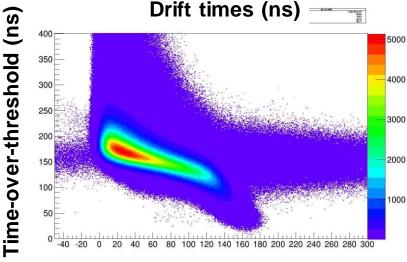
Data Analysis - Track Reconstruction

Calibration method

- Time offset and time-over-threshold shifts for individual channels corrected
- Determine isochrone radius drift time relation, global (same) for all straws
 - 1st step: from time spectra (integration/number of entries)
 - 2nd step: isochrone drift time re-fit by reconstructed tracks

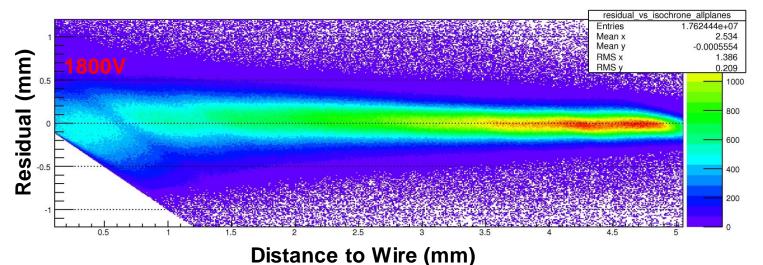
Track reconstruction (minor hit cuts)

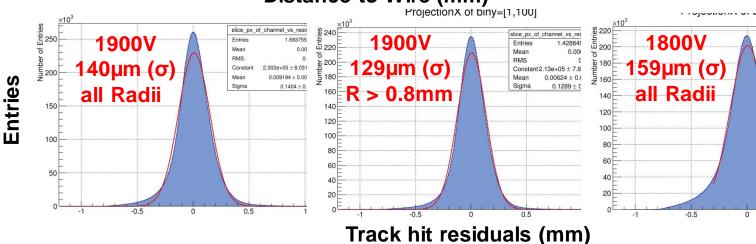

- χ^2 fit of straight line to isochrone circles
- Cut on minimal number of hits (7), on average 12 hits per track (10-15 hits)
- Removal of single outlier (δ -electron) hits (distance > 3σ)
- No further cuts on track quality (no χ^2 cut, ..)
- Still some background hits present (multi-tracks, improper timing, ..)
- Straggling not corrected, ...


→ Susanna's & Harout's talk

Data Analysis - Raw Time Spectra

- Here: ASIC/TRB readout data shown
- Clean beam data, similar for FADC data
- Drift time spectra (all channels)
 - Time range ~ 160ns
- Time-over-threshold (ToT) vs drift times
 - ToT function of dx, but not linear
 - Landau tail in ToT visible
- Beam-related background hits visible (multiple tracks), low % level


tglied der Helmholtz-Gemeinscha


Data Analysis - Track Hit Residuals

2.015e+05 ± 7.071e+01

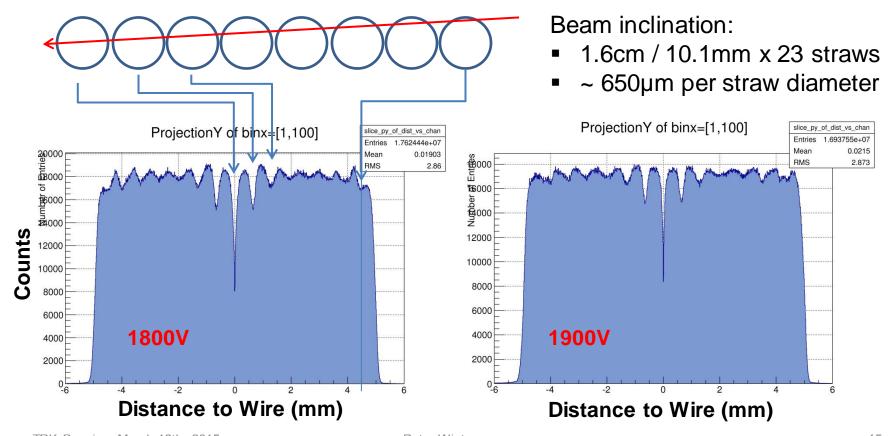
Radial distribution of track hit residuals (all straws)

Spatial Resolution Results (Pre-lim)

- List of obtained residuals for 800 MeV/c proton data at different gas gains
- Some worst-case conditions → results being upper limits (safety margin)
- Beam position at tube middle → max. wire sag (+ deflection) up to 70µm
- Perpendicular beam on ~mm wire spot → E-field distortion by space charge
- Further room for improvements (some systematic errors still present)
 - Calibration of isochrone drift time relation for individual straws
 - Straggling of tracks not corrected (track passes through 24 straws)
 - New ASIC with less amplification dispersion
- Final goal (150µm) already in reach with prototype ASIC
- Resolutions at 1900V prove mechanical set up precision

Similar results for FADC readout

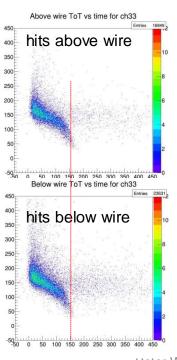
Residuals (µm) for different high voltages

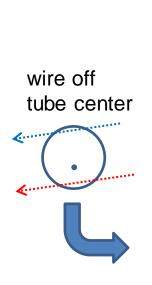

High voltage	1800V	1850V	1900V
Gas gain	5×10 ⁴	8×10 ⁴	13×10 ⁴
Residuals all hits	186	161	140
Only R > 0.8 mm	171		129
Central gaussian	159	142	

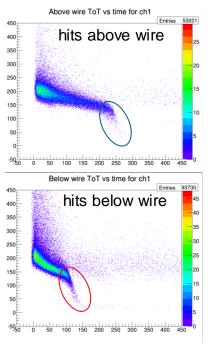
glied der Helmholtz-Gemeinsc

Radial Distribution Of Straw Hits

- Distance to wire position from reconstructed tracks if straw hit (all straws)
- Inefficiency pattern from tracks with low number of hits (rejected if <7hits)
 - Per layer 12 straws (16-4), up to ~ 4 missing hits from close to wire or close to tube wall
 - Estimation: few % inefficiency, disappears if larger setups, more straw hits per track


Straw – Beam Tomography




- New method developed to check wire in-tube centering: intrinsic & raw data
- Measure: end region of time-over-threshold versus drift time is sensitive to tracks passing close to straw tube wall
- Check time differences for track hits above and below the wire position
- Further studies ongoing, ~100 µm precision?

time-over-thresh versus drift time

wire in center

ied der Helmholtz-Gemeinsch

Summary STT Status

- Spatial resolution goal (150µm) already in-reach with protoype readout & no high-precision mechanical straw frame setup
- dE/dx analysis for PID still ongoing, results soon (truncation, ..)
- Time-offset extraction in raw data to be investigated (triggerless readout)
- Calibration, track reconstruction & dE/dx analysis methods in development
- Alignment concept of straw modules in frame approved by beam data
- Intrinsic method (raw data) for straw wire / tube position measurement developed (straw tomography with slightly inclined beam)
- Robust straw operation demonstrated, even if ~1mm wire displacement
 - No straw operation failure with high-rate beam observed
 - Data cleaning by selecting hits above/below the wire, 2-fold calibration

Thank you for your

attention