

Tests of stave cooling

Tommaso Quagli for the MVD Group II. Physikalisches Institut, JLU Gießen

PANDA Collaboration Meeting Gießen, March 17th, 2015

Tests of stave cooling

 First validation of full-scale cooling system on one strip barrel stave

• Performed at ZEA-1, Jülich*, in March 2015

* thanks to V. Fracassi, D. Grunwald, E. Rosenthal, S. Wolf

Stave design

Stave design

p-side ("top"):

- 36 PASTA chips
- 256 mW per chip
- Active area $4.5 \times 3.4 = 15.3 \text{ mm}^2$ (power density 1.7 W/cm²)
- Total power: 9.2 W

n-side ("bottom"):

- 24 PASTA chips
- 6 MDC chips → assumed identical to PASTA
- Total power: 7.7 W

Total Power: 16.9 W

Dummy-chip resistors:

- Area $7.15 \times 4 \text{ mm}^2$
- Active area 3 × 3 mm²
- Nominal power 256 mW (max. 600 mW)
- High power density:
 2.8 W/cm²

Square PANDA sensor

Flex PCB (Kapton-copper)

Lack (15 µm)

Copper (12 µm)

A-2003ED Glue-Pl-Glue (50 μm)

Copper (12 µm)

Lack (15 µm)

1. Sensor glued on the stave

2. Flex cut out, glued on p-side, folded, glued on n-side

3. Resistors are glued on p-side (36) and n-side (30) and cabled in parallel in 12 groups

4. Wire bonding (on p-side only) between resistors and sensor

Stave cooling test system

FLIR SC6000

- Spectral range 8 9.2 μm
- Resolution 640 × 512 pixel
- Frame rate 1 125 Hz

Available Measurements:

- Inlet and outlet water temperature
- Closed, underpressure water cooling circuit
- Water temperature control
- Volume flow
- Pressure

Performed measurements

- Scan over different water fluxes (150 350 mL/min)
- Different power configurations:
 - Nominal power (17W)
 - Nominal power, only front side (9.2 W)
 - Nominal power density (1.67 W/cm2) → 10 W or 150 mW/chip
 - Nominal power density, only front side (5.5 W)
- Temperature profile along the stave (measured on the 36 resistors)
- Temperature measured on the sensor and on some points on the stave

Results – base measurement

Temperature profile without heating (cooling flux 135 mL/min @ 18°C) Room temperature ~20 °C

Results – nominal power

Temperature profile with heating at nominal power (16.9 W); cooling water @ 18°C, different fluxes. Room temperature ~20 °C

Results – nominal power

Results – nominal power (back side)

Temperatures generally higher than on the front side

Results – nominal power (back side)

Results – different power configurations

Temperatures generally higher than on the front side

Results – dissipated power

- Power dissipated by the cooling water is $P_{hvdr} = \Delta T \cdot C_{water} \cdot \Phi/60$
- All values above 90%; many are above 100%
- ΔT is small and difficult to measure precisely

Results – measurement with sensor

The sensor has very low emissivity → cannot be measured with IR as it is.

Possible solution: thin layer of white powder.

Reflection strongly reduced (although still present)

Results – measurement with sensor

The temperature on the sensor approaches the room temperature

Results – measurement with sensor

Additional test with double power (512 mW per chip), only on 9 resistors around the sensor

Summary

- First validation of stave cooling system: satisfactory results!
- Negligible heat transfer from the chips to the sensor
- The uniformity of the glue layer is crucial
- With maximum power, T_{chip} < 35°C and T_{sensor} < 25°C

Summary

- First validation of stave cooling system: satisfactory results!
- Negligible heat transfer from the chips to the sensor
- The uniformity of the glue layer is crucial
- With maximum power, T_{chip} < 35°C and T_{sensor} < 25°C
- CAVEAT: influence of room temperature not studied!
- - → New tests with higher room temperature are required.

Thank you for your attention!

Results – nominal power (back side)

Several measurements performed beside the resistors:

