Production of Glass Nozzles

Silke Grieser

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik PANDA Meeting Gießen, March 17th 2015

Laval nozzles for cluster-jet targets

Production of Laval nozzles

- Motivation for a new production process
 - Issue of the "previous" production process
 - Laser technique provides connection between inlet and outlet zone of nozzle (narrowest inner diameter $> 40~\mu m$)
 - Precise drilling of the small inner diameter (30 μm)
 - $\rightarrow \text{ Challenge: consistently drill}$

New Production Process of Nozzles

Selective laser etching

- Selective laser etching of glass by Lightfab
 - Ultra-short pulsed laser is focused within a transparent material, e.g., glass
 - Laser is only absorbed in the focal volume
 - There the optical and chemical properties of the material is changed
 - By moving the focus the areas can be selectively etched
 - 4 Only 3 mm in the depth possible (currently limited by optics)

[LLT RWTH Aachen]

The New Nozzle

 \bullet Microscopic view of the narrowest inner diameter of about 30 μm

The New Nozzle

Comparison between the new glass nozzle and the other nozzles

Sealing of the New Nozzle

- Vespel[®] ring for sealing between nozzle adaptor and cold head
- · Aluminium ring to adapt the nozzle at the cold head geometry
- Vespel[®] cylinder for sealing between nozzle and aluminium ring
- New glass nozzle
- Aluminium part to fix the glass nozzle in the nozzle adaptor
- Cooling test with 18 bar helium down to 19.5 K successful

New Production Process of Nozzles

Summary & Outlook

- \bullet A new Nozzle with an inner diameter of 30 μm was produced
- ullet Successful sealing and cooling test down to $19.5\,\mathrm{K}$
- \bullet Vespel $^{\circledR}$ is an excellent alternative for indium for sealing (even by the CERN nozzles)
 - Acurate extraction, non-poisonous, reusable
- Initial measurements with new nozzles at the PANDA cluster-jet target prototype to prove the operation of these new nozzles