

Update on Simulation of Ds Semileptonic Decay

Lu Cao Institut für Kernphysik, Forschungszentrum Jülich

PANDA LII. Collaboration Meeting @Giessen 16-03-2015

Motivation

 Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.

Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².

Motivation

Theoretical calculations:

- Lattice QCD: I. Kanamori, arXiv:1302.6087[hep-lat] etc.
- Light-Cone Sum Rules: N. Offen et al., PRD88 034023(2013); K. Azizi et al., JPG 38 095001(2011) etc.
- Effective Field Theory: A. F. Falk et al., Nucl. Phys. B343,1-13 (1990) etc.

Competing measurements

- Other experiments in this field:
- Exclusive semileptonic decays have been studied by ARGUS, CLEO, BaBar
- $D_s^+ \rightarrow \phi e^+ v_e$: **BaBar** arXiv:hep-ex/0607085
- $D_s^+ \to f_0(980)e^+\nu_e$: **CLEO** PhysRevD.80.052009
- $D_s^+ \rightarrow \eta^{(\prime)} e^+ v_e$: **BESIII** ongoing

Motivation

mileptonic decay

Motivation

<u>PRD 89 114003(2014)</u> $\sigma(\overline{p}p \to D_s^+ D_s^-) = 20 \text{ nb}$ @ $p_{lab} = 8.0 \text{ GeV/c}$

mileptonic decay

Reconstruction Strategy

$$M^{2}(\boldsymbol{v}_{e}) = \left(E_{p\overline{p}} - E_{Ds^{-}} - E_{\eta} - E_{e^{+}}\right)^{2} - \left|\vec{P}_{p\overline{p}} - \vec{P}_{Ds^{-}} - \vec{P}_{\eta} - \vec{P}_{e^{+}}\right|^{2}$$
$$q^{2} \equiv M^{2}(\boldsymbol{v}_{e}e^{+})$$

Reconstruction Strategy

$$M^{2}(\boldsymbol{v}_{e}) = \left(E_{p\overline{p}} - E_{Ds^{-}} - E_{\eta} - E_{e^{+}}\right)^{2} - \left|\vec{P}_{p\overline{p}} - \vec{P}_{Ds^{-}} - \vec{P}_{\eta} - \vec{P}_{e^{+}}\right|^{2}$$
$$\boldsymbol{q}^{2} \equiv M^{2}(\boldsymbol{v}_{e}\boldsymbol{e}^{+})$$

Vertex Resolution of η

p a n)d a

Results of Efficiency & Resolution

Invariant Mass of Leptons System

100k evt #26514

Results of Efficiency & Resolution

100k evt

		efficiency	Mass resolution [MeV/c ²]	Vertex resolution [µm]			Momentum rel. resolution [%]		$\#\left(e^{+}\nu_{e}\right)$
				Х	Y	Z	Pt	Pz	
Ds		17.7%	18.7	69	68	151	2.6	1.1	-
η	$\pi^+\pi^-$	6.9%	10.8	265	246	691	1.9	1.4	878
	$\pi^+\pi^-e^+$	5.8%	10.9	121	115	232	1.9	1.5	796

Fitting Parameters in Form Factor

100k evt #26514

Estimated Event Rate

$R = \mathcal{L} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} \cdot \boldsymbol{t} \cdot \mathcal{BR}$

 $= 2 \times 10^{32} (cm^{-2}s^{-1}) \cdot 20 (nb) \times 10^{-24} (cm^{2}/b) \cdot 1\% \cdot 3 \times 10^{6} (s) \cdot 2.67\% \times 5.49\% \times 22.74\%$ $\sim 40 \text{ events} \qquad \text{with high luminosity mode in 35 days} \qquad \text{top low (ii)}$

too low ☺ under investigate...

Photons in π^0 Box

10k evt single pi0:

p = 0.3 GeV/c $\theta = 0^{\circ}$

 $\phi=0^{\circ}{\sim}360^{\circ}$

pandaroot #26514 default parameters in PidCorr

- 101.4% seen
- 42.3% rejected (χ²prob<0.01in mass constraint fit)
- 59.1% accepted in mcf
- 16.0% MC truth matched

10k evt single pi0:

p = 0.3 GeV/c

 $\theta = 0^{\circ}$

Photons in π^0 Box

#26514 default parameters in PidCorr

Summary & Outlook

- Decay chain reconstructed and resolution improved
- Expand kinematic fit for unmeasured neutrino
- Preliminary efficiency and production rate obtained
- Estimate precision on determining form factor

- Improve present simulation if possible
- \Box Consider more tagging channels for D_s^-
- Investigate background events
- Simulation with different beam momenta

Thank you !

l.cao@fz-juelich.de

Backup Slides

Charm Production Cross Section in $\overline{p}p$

EPJA 48, 31(2012), arXiv:1111.3798v2

- quark-gluon string (QGS) model
- uncertainties introduced by the strong couplings obtained from LCSR

JPCS 503, 012012(2014), arXiv:1311.1607

- double handbag approach
- in accordance with NPB 316, 373(1989) using a quark-diquark model

PRD 89, 114003(2014), arXiv:1404.4174

- hadronic interaction model
- baryon exchange (shaded band)
- quark model (grid)
- Results obtained in Born approximation are indicated by the dotted (baryon exchange) and dashdotted (quark model) lines

16/03/2015

Charm Production Cross Section in $\overline{p}p$

The direct $\bar{p}p \rightarrow D_s^+ D_s^-$ transition requires the annihilation of three (up or down) quark-antiquark pairs and a creation of two (s and c) quark-antiquark pairs and is, therefore, OZI suppressed.

Simulated Decay Chain

FF Parameterization

- Lattice QCD: I. Kanamori, arXiv:1302.6087[hep-lat] etc.
- Light-Cone Sum Rules: N. Offen et al., Phys. Rev. D88,034023 (2013) etc.

$$\langle \eta^{(\prime)}(k) | V^{\mu}(q^2) | D_s(p) \rangle = f_+(q^2) \left[(p+k)^{\mu} - \frac{M_{D_s}^2 - M_{\eta^{(\prime)}}^2}{q^2} q^{\mu} \right] + f_0(q^2) \frac{M_{D_s}^2 - M_{\eta^{(\prime)}}^2}{q^2} q^{\mu},$$

$$\eta_8 = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}), \qquad \eta_1 = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}). \qquad (2.1)$$
The physical η and η' should be a mixing of the above octet state (η_8) and the singlet state (η_1) :

$$\eta = \cos \theta \eta_8 - \sin \theta \eta_1, \qquad \eta' = \sin \theta \eta_8 + \cos \theta \eta_1. \qquad (2.2)$$

$$\langle P(p) | \bar{q} \gamma_{\mu} c | D_{(s)}(p+q) \rangle = 2 f^{+}_{D_{(s)}P}(q^{2}) p_{\mu}$$

+ $\left(f^{+}_{D_{(s)}P}(q^{2}) + f^{-}_{D_{(s)}P}(q^{2}) \right) q_{\mu}$

$$f^{0}_{D_{(s)}P}(q^{2}) = f^{+}_{D_{(s)}P}(q^{2}) + \frac{q^{2}}{m^{2}_{D_{(s)}} - m^{2}_{\eta^{(\prime)}}} f^{-}_{D_{(s)}P}(q^{2})$$