Reconstruction of decay time differences of correlated $\mathrm{D}^0 \text{--} \overline{\mathrm{D}}^0$ pairs

Andreas Pitka

16. März 2015

II. Physikalisches Institut Gießen

Reconstruction of decay time differences of correlated $\mathrm{D}^{0}\text{-}\overline{\mathrm{D}}^{0}$ pairs

2 Resolution Function

Reconstruction of decay time differences of correlated ${
m D}^{0}-\overline{
m D}^{0}$ pairs

Motivation

Measurement of $D^0 - \overline{D}^0 - Mixing$ Decay channel: $\overline{pp} \rightarrow \psi$ (3770) $\rightarrow D^0 \overline{D}^0 \rightarrow (K_S \pi^+ \pi)(K^+ \pi)$

- The Dalitz-plot of the $D^0 \rightarrow K_S \pi^+ \pi^-$ decay depends on the decay time difference between \overline{D}^0 - and D^0 -decay.
- A time dependant analysis allows the determination of mixing and CP-violating parameters.
- Of mayor importance is therefore a good resolution of the decay time difference. Reconstruction of decay time differences of correlated $D^0 - \overline{D}^0$ pairs

Resolution Function

Link of space and time resolution

Reconstructed vertices

By charged tracks: $D^0 \rightarrow K_S \pi^+ \pi^ \overline{D}^0 \rightarrow K^+ \pi^-$

Reconstructed lifetime

$$t = rac{m_{\mathrm{D}}}{p} \left(rac{p}{p}
ight) \cdot (\boldsymbol{L} - \boldsymbol{L}_0)$$

• The decay time distribution can be described by a convolution of an exponential lifetime distribition and a gaussian resolution function.

Resolution Function

Resolution function in case of multiscattering

- In case of multiscattering the vertex resolution does **not** follow a normal distribution.
- Approximately a sum of gaussians can be used.
- Resolution function: $\mathcal{R} = \sum_{i=1}^{4} g_i$.

Resolution of $\overline{\mathrm{D}}^{0}$ -vertex

Simulation with Pandaroot Release Oct14

Reconstruction of decay time differences of correlated $D^0-\overline{D}^0$ pairs

Results

Resolution of D^0 -vertex

Simulation with Pandaroot Release Oct14

Reconstruction of decay time differences of correlated $D^0-\overline{D}^0$ pairs

- Also in later experiment such a fit will allow an approximation of the decay time resolution.
- $\tau_{\rm D^{o}}$ is in agreement with $\tau_{\rm MC}=$ 410, 1 fs.
- $\tau_{\overline{D}}$ is slightly overestimated (syst. Error).

Reconstruction of decay time differences of correlated $D^0-\overline{D}^0$ pairs

Results

Decay Time Difference

• Secondary Vertex • Primary Vertex \overline{p} \overline{D}^{0} K^{+} $\psi(3770)$ D^{0} K^{+} π^{-} K_{S} $\Delta t \approx \frac{m_{D}}{p_{z}} \Delta z$

Used Approximation

• $|\boldsymbol{L}_{\mathrm{D}^{0}} - \boldsymbol{L}_{\overline{\mathrm{D}}^{0}}| \approx \Delta z$

•
$$|oldsymbol{p}_{\mathrm{D}^{\mathbf{0}}}| pprox |oldsymbol{p}_{\overline{D}^{\mathbf{0}}}| pprox rac{p_{z}(\overline{\mathrm{p}})}{2}$$

- The resolution of L_0 is in the order of $\sigma_z \approx 1 \,\mathrm{mm}$ (POCA).
- Transverse momenta are small: $m_\psi \approx 2 m_{
 m D}$.

Dependance of primary vertex can be removed

$$\begin{aligned} \Delta t &= t_{\mathrm{D}^{0}} - t_{\overline{\mathrm{D}}^{0}} = \frac{m_{\mathrm{D}}}{p_{\mathrm{D}^{0}}} \left(\frac{\boldsymbol{p}_{\mathrm{D}^{0}}}{p_{\mathrm{D}^{0}}} \right) \cdot \left(\boldsymbol{L}_{\mathrm{D}^{0}} - \boldsymbol{L}_{0} \right) - \frac{m_{\mathrm{D}}}{p_{\overline{\mathrm{D}}^{0}}} \left(\frac{\boldsymbol{p}_{\overline{\mathrm{D}}^{0}}}{p_{\overline{\mathrm{D}}^{0}}} \right) \cdot \left(\boldsymbol{L}_{\overline{\mathrm{D}}^{0}} - \boldsymbol{L}_{0} \right) \\ \Delta t &\approx \frac{m_{\mathrm{D}}}{p_{z}} \Delta z \end{aligned}$$

• Resolution without cuts: $\sigma_{\Delta t} = (1159, 9 \pm 11, 9) \text{ fs}$

ightarrow Cut on event-based error (< 1200 fs) and $\Delta t = [-3000 \, {\rm fs}, \, 3000 \, {\rm fs}]$

Resolution after cuts (RMS)

 $\sigma_{\Delta t} = 612, 8\,\mathrm{fs}$

Results

Comparison to other experiments

- Decay time difference $\Delta t \approx \frac{1}{c\beta\gamma}\Delta z$.
- Comparison to mixing studies via $(e^+e^- \rightarrow \Upsilon(10860) \rightarrow B^0\overline{B}^0)$.
- $au_{
 m B}$ $pprox 3 au_{
 m D}$ •.
- Shorter mean lifetime but bigger boost and better decay time resolution.

Experiment	$\beta\gamma(\psi,\Upsilon)$	$\sigma_{\Delta t} ({\rm fs})$
P ANDA	1,74	612,8
BaBar	0,55	1092
Belle	0,425	1560

Reconstruction of decay time differences of correlated $\mathrm{D}^{0}\text{-}\overline{\mathrm{D}}^{0}$ pairs

Summary

Summary

- The vertex resolution is within the technical design goals.
- Good knowledge of the detector resolution is mandatory for time dependant measurements.
- Within the examined channel the decay time resolution is $\sigma_{\Delta t} = 612,8 \, {\rm fs}.$
- Comparison with other experiments indicate that mixing studies are feasible.