

Summary

 \blacksquare Secondary track finder code status

 ${}^{\amalg}$ Tests @ different displaced vertices:

- imma in radial direction
- $^{\amalg}$ in longitudinal direction

 \square Tests with $\overline{\Lambda}\Lambda$ events, phase space model

 \figure Tests with $\overline{\Lambda}\Lambda$ events, boosted model

¤ Conclusions

The track finding procedure

Track Finding Procedure

xy plane

in As usual, the TF finds the tracks in the xy plane and then in the $z\phi$ plane

¤ Several issues:

- \exists displaced vertices \rightarrow no (0, 0, 0) constraint
- ^耳 low momentum particles

 $\,^{\Join}$ Different problems are treated in different parts of the code

¤ Up-to-now: ¤ "*Long*" tracks ¤ "*Forward*" tracks

Long Tracks – track finder

- 1. A quadruplet of hits on the pivotal layers 0, 7, 16 and 20 are found in the STT
- 2. The circles through 3 out of these 4 hits are found (all combinations) \rightarrow mean value
- 3. A fit is performed via the Legendre transformation in the Conformal plane
- 4. The tracklet is formed with hits from:
 - i. MVD pixel @ distance < 1 cm in sector ± 1
 - ii. MVD strip @ distance < 1 cm in sector ± 1
 - iii. STT @ distance < 1 cm in the same sector(s)
 - iv. GEM @ distance < 1.5 cm in sector \pm 1 and radial distance > 42 cm
 - v. SciTil @ distance < 10 cm

Long Tracks – track finder

- 5. An Analytical Fit finds the final x0, y0, R parameters
- 6. The final *xy* track candidate is then formed with MVD, STT, GEM (and SciTil) hits
- 7. The *z* finder finds the intersections of the STT skewed tubes to the *xy* circle
- MVD, GEM and SciTil hits (with z!) are added
- 9. A $z\phi$ plane fit with a straight line is performed to obtain the last two track parameters, $tan\lambda$ and zo

16/03/2015

Sec Trk Fin

Forward Tracks - track finder

- 1. Make a tracklet **out of GEM hits**
- 2. Compute one hit for each station \rightarrow 3 hits \rightarrow circle, which is the first track hypothesis
- 3. Create a tracklet adding MVD pixel, MVD strip, STT hits @ distance < 3 cm
- 4. Make a first estimate of $z\phi$ with MVD & GEM _4 to clean the tracklet
- 5. Go back to *xy* plane and perform an analytical fit
- 6. Create the final track candidate with MVD, STT, GEM and a hit-to-track distance < 0.5 cm
- 7. The following *z* procedure is the same as in *long* track case

Long tracks part of code has been quite refined Forward tracks part of code still has to be refined (1° version)

Sec Trk Fin

Test @ different radial/longitudinal distances

Primary vs Secondary TF

 \square Study of the performances of the secondary vs primary track finder

 \exists 5000 events of $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ @ beam mom = 4 GeV/c

□ Decay with $c\tau = o \rightarrow decay$ in the formation vertex @: □ x = o, z = o □ x = o, z = 10 cm □ x = 10 cm, z = 0 □ x = 10 cm, z = 10 cm

Secondary track finder with *long* and *forward* track finders on
 Primary track finder in its standard layout

- \square Selection of the *reconstructable* tracks:
 - \square 3 hits for xy (MVD, STT paral, GEM)
 - \exists 2 hits for $z\phi$ (MVD, STT skew, GEM)
- □ Association to MC with PndMCTrackAssociator BUT, afterwards, only one reco track for each MC track is considered *true*. Further reco tracks associated to the same MC track are *clones*.

**reconstrubctable* means: ^{II} 3 hits for *xy* ^{II} 2 hits for *z* ϕ

Efficiency vs momentum

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

All

16/03/2015

Sec Trk Fin

4 pivolal layer Efficiency vs momentum EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

PIONS ¤ Primary Tf ¤ Secondary Tf

16/03/2015

Sec Trk Fin

(a) x = 10 cm, z = 10 cm

16/03/2015

Secondary track finder

PURITY = # CORRECTLY ASSIGNED HITS

MC POINTS

EFFICIENCY = # CORRECTLY ASSIGNED HITS

RECO HITS

16/03/2015

Sec Trk Fin

$\bar{p}p \rightarrow \bar{\Lambda}\Lambda$, phase space model

16/03/2015

Sec Trk Fin

Efficiency vs momentum PHSP

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

¤ Primary Tf ¤ Secondary Tf

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

- ¤ < 5 cm, the primary TF is better (still close enough to IP)
- Ξ 5 cm < x < 15 cm, the secondary TF is better (MVD + STT)
- Ξ > 15 cm, the primary TF is better

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

¤ < 5 cm, the primary TF is better (still close enough to IP)

 Ξ 5 cm < x < 15 cm, the secondary TF is better (MVD + STT)

H > 15 cm, the primary TF is better

¤ <10 cm, the primary TF is better (still close enough to IP)

- □ IO CM < X < 30 CM, the secondary
 TF is better
 </p>
- \square > 30 cm, comparable

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

16/03/2015

Sec Trk Fin

IM for clean tracks

Sec Trk Fin

$\bar{p}p \rightarrow \bar{\Lambda}\Lambda$, boosted model

MC information

Decay vertex position

MC information

Efficiency vs momentum boost

EFFICIENCY = # TRUE TRACKS WITH > 80% CORRECTLY ASSIGNED HITS

MC RECONSTRUCTABLE TRACKS

42

IM for clean tracks

Conclusions

- □ In the tests with formation/decay vertex @ 0, 10 cm in x and/or z direction, the primary TF shows better results in an area of some cm around (0, 0, 0).
- $\,^{\Join}\,$ Far from the IP the secondary TF shows better performances.
- $\ensuremath{^{\ensuremath{\square}}}$ The secondary TF covers in a better way the low θ region (still to be improved).
- $^{\Join}$ The secondary TF algorithm needs an improvement in the z ϕ plane, to avoid the peak and tails in the momentum distribution.
- ^{II} In the $\Lambda\Lambda_{bar}$ events phase space model, the distribution of the secondary vertex positions is peaked @ (0, 0, 0), thus giving better results with the primary TF.
- In the $\Lambda\Lambda_{bar}$ events boosted model, the distribution of the secondary vertex positions of the Λ_{bar} is forward peaked, thus giving better results with the secondary TF; the Λ is still better with the primary TF.
- **WARNING!** The looping particles are still left unfound (code needed)

Thanks to Stefano and Karin and THANK YOU

FOR YOUR ATTENTION

16/03/2015

Sec Trk Fin