First steps with the TOFPET ASIC

Lukas Gruber^{a,b}

^aStefan Meyer Institute for Subatomic Physics, Vienna, Austria ^bGSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

PANDA TOF meeting March 17, 2015

Paul Bühler^a, Johann Marton^a, Herbert Orth^b, Carsten Schwarz^b, Dominik Steinschaden^a, Ken Suzuki^a

Evaluation kit

First steps

- Documentation, firmware, demo programs, etc. provided by PETsys (GoogleDrive)
- Getting started with test routines and calibration
- Test functionality of ML605 board running a Build-In System Test
- Check the communication between the two boards (FPGA and TOFPET) by testing clock and HV

Figure 1.1: System diagram

TOFPET ASIC evaluation kit software user guide v3.1, PETsys, March 2015

320 MHz clock

The PAB should receive a 320 MHz clock from the FPGA Clock signal measured at the PAB:

→ Communication between FPGA and TOFPET works

HV supply

- The PAB has an internal HV supply module which can be controlled via the FPGA
- The HV DAC has to be calibrated by comparing the set voltage (V_{set}) and the actual voltage (V_{meas}) at the output of the mezzanine bords
- Shows again that communication works

Simple linear regression:

$$V_{\text{meas}} = m \times V_{\text{set}} + b$$

Parameters m,b are used to produce a calibration file and calibrate the HV DAC.

Current work and next steps

- The mezzanine board connects to 4 Hamamatsu 16 channel arrays
- We need an adapter to connect single SiPMs

Samtec SS4 connector fits to ST4

We will prepare a printboard with ST4 on one side and connectors for SiPMs on the other side.

Next steps: read-out SiPM signals, determine time resolution, attach scintillator tile

Thank you!