Improvements to Bremsstrahlung energy loss correction for electron momentum reconstruction

PAANA Collaboration Meeting

Ermias ATOMSSA

Institut de Physique Nucléaire d'Orsay

March 17, 2015

Effect of Bremsstrahlung radiation

- Photon emission by electrons before exiting the tracking system
- Some or all of the tracking points are created after the track loses momentum
- Leads to mis-reconstruction of the momentum that shows as a tail in resolution distributions and invariant mass spectra

General approach

- Thesis work by Binsong Ma, 23 Sept 2014, Université Paris Sud
- Energy distribution highly non Gaussian: Can not be corrected easily with Kalman Filter
- Search for clusters in the EMC generated by the Bremsstrahlung photons associated with each track and add the total energy to the track's momentum
- Relies on the observation that
- 90% of Bremsstrahlung photons are emitted within a cone of 2 mrad
- The angular separation of the reconstructed electron momentum and photon cluster position is a reliable predictor of the radius at which the photon was emitted

Electron energy loss:

Cluster merging

- Depending on the momentum and point of emission, Bremsstrahlung photon clusters can be reconstructed separately from or merged with that of the electron
- Higher momentum tracks and late emission of photons tend to result in merging, whereas lower momenta and early emission result in separate clusters
- The method has to handle both cases for every track

Separate bumps

- Dominant at low momentum and late emission
- Search for bumps in the EMC with $E_{\text {bump }}>1 \% E_{\text {track }}$
- Apply angular selection on $\Delta \phi= \pm\left(\phi_{\text {bump }}-\phi_{e^{\mp}}\right)$ and $\Delta \theta= \pm\left(\theta_{\text {bump }}-\theta_{e^{\mp}}\right)$
- $\Delta \theta:|\Delta \theta|<2^{\circ}$ (no bending assumed in theta)
- $\Delta \phi$ (Barrel): $-1^{\circ}<\Delta \phi<2 \arcsin \left(\left(0.3 \cdot B \cdot R_{T R K}^{\text {ext }}\right) / p_{T}^{\text {rec }}\right)$
- $\Delta \phi$ (Forward): $-1^{\circ}<\Delta \phi<\left(0.3 \cdot B \cdot Z_{S T T+M V D+G E M} \cdot \tan \theta_{\text {rec }}\right) / P_{T}^{\text {rec }}$
- Corrected momentum: $p_{C O R}=p_{K F}+E_{\gamma, \text { sep }}^{T O T}$, where $E_{\gamma, \text { sep }}^{T O T}=\sum E_{\gamma, \text { sep. }}^{\text {Brem }}$. bumps

Photons emitted before exit from tracking system

Merged bumps

Distribution of energy deposits in crystals versus ϕ.

- Project the energy deposits in the cluster associated to the electron in ϕ direction
- Split the phi projection along local minima into " ϕ-bumps"
- The right (left) most ϕ-bump with sufficient energy is considered as originating from the $e^{+}\left(e^{-}\right)$and the total energy of the phi bumps to the left (right) is added to the momentum of the track depending on charge

$$
p_{C O R}=p_{K F}+E_{\gamma, \text { sep }}^{T O T}+E_{\gamma, m r g}^{T O T}, \text { where } E_{\gamma, m r g}^{T O T}=\sum E_{\phi-\text { bumps }}
$$

Performance of the method

- Significantly improved resolution at all angles (L:Barrel, R:FWD) and momenta
- Correction with separated only and both separated and merged photons
- Contribution from merged increases with momentum

Neutral candidates vs. bumps

- Initial code used neutral candidates for separated bump correction to avoid adding bumps already associated with the electron
- Results in a dependence on track-cluster association criteria
- Issue first noticed in recent PANDAroot releases (\approx scrut14 and above)
- Possibly due to bumps being assigned to secondary electrons/fake tracks?
- All bumps used now with a condition that EmcIndex(bump) \neq Emclndex(track)

Over-correction

- Visible asymmetry of corrected resolution, too much energy is being added back
- For tracks that emit late, the momentum reconstruction is mostly based on "good" hits
- Adding the full energy of the photon for such tracks over-corrects momentum

Emission radius dependence of resolution degradation

- Photons emitted in later half of tracking system do not affect the reconstructed momentum as much as photons emitted early
- Reconstructed momentum resolution improves with increasing MC radius ($R_{\text {True }}$) of emission (ie. fraction of tracking points before emission)

Resolution of reconstructed momentum

Emission radius dependence of resolution degradation

- Photons emitted in later half of tracking system do not affect the reconstructed momentum as much as photons emitted early
- Reconstructed momentum resolution improves with increasing MC radius ($R_{\text {True }}$) of emission (ie. fraction of tracking points before emission)

Resolution of reconstructed momentum

Emission radius dependence of resolution degradation

- Photons emitted in later half of tracking system do not affect the reconstructed momentum as much as photons emitted early
- Reconstructed momentum resolution improves with increasing MC radius ($R_{\text {True }}$) of emission (ie. fraction of tracking points before emission)

Resolution of reconstructed momentum

Emission radius dependence of resolution degradation

- Photons emitted in later half of tracking system do not affect the reconstructed momentum as much as photons emitted early
- Reconstructed momentum resolution improves with increasing MC radius ($R_{\text {True }}$) of emission (ie. fraction of tracking points before emission)

Resolution of reconstructed momentum

Emission radius dependence of resolution degradation

- Photons emitted in later half of tracking system do not affect the reconstructed momentum as much as photons emitted early
- Reconstructed momentum resolution improves with increasing MC radius ($R_{\text {True }}$) of emission (ie. fraction of tracking points before emission)

Resolution of reconstructed momentum

Emission radius dependence of resolution degradation

- Photons emitted in later half of tracking system do not affect the reconstructed momentum as much as photons emitted early
- Reconstructed momentum resolution improves with increasing MC radius ($R_{\text {True }}$) of emission (ie. fraction of tracking points before emission)

Resolution of reconstructed momentum

Emission radius weighted correction

- Solution: Add a smaller fraction of the energy for photons emitted later:

$$
E_{\gamma, \text { sep }}^{T O T}=\sum W(R) \times E_{\gamma, \text { sep. }}^{\text {Brem }} \text { butps }
$$

- Constraints on weight function: $W(0)=1$ and $W\left(R_{\text {TRK }}^{\text {ext }}\right)=0$.
- Estimator of R based on the relation between $R_{\text {True }}, \Delta \phi, p_{T}: R_{C a l c}=K \times \frac{2 p_{T} \sin (\Delta \phi / 2)}{0.3 B}$
- Correlation plot: Events with single Bremsstrahlung photon ($R_{\text {emission }}<R_{T R K}$) and single identified separate bump (cut on $\Delta \phi, \Delta \theta$), MC matching required
- Weight: Fermi function with inflection point at the middle of tracking system

Results with weighted correction (Barrel Region)

Resolution of fully corrected (with weight) momentum

Resolution of fully corrected (with weight) momentum

- Weighting fixes over-correction at all momenta and angles (more plots in backup)
- The same function is used everywhere
- Particularly useful for low momentum tracks where search window can be wide

Full event simulation

- Presence of other particles that generate hits in the EMC can bias the correction
- Potential issue especially at low momenta, where $\Delta \phi$ search window is large
- To test the stability in presence of other particles: $\pi^{0} \mathrm{~J} / \psi$ and $\pi^{0} \pi^{+} \pi^{-}$
- Significantly improved J / ψ mass resolution with minimal effect on $\pi^{+} \pi^{-}$spectrum
- Modifications (discussed on PANDAroot forum, msg:17933) to the track-cluster matching algorithms were used
- Reason: A failed association can result in adding the energy of the electron's cluster back to the momentum
- Allows for much tighter mass cut while improving efficiency

$\pi^{+} \pi^{-}$inv. mass

Implementation in PANDAroot (1/3)

- ϕ-bumps are created for all clusters and stored separately in PndEmcPhiBumpSpiltter.cxx (called from XYZ..). No change required in "official" simulation macros for this step
- Corrected momentum calculated for all reconstructed tracks and stored separately in a TCA by PndPidBremCorrector.cxx. Add the following to pid_complete.C:

```
// after all the Pid modules..
PndPidBremCorrector *bremCorr = new PndPidBremCorrector();
fRun->AddTask(bremCorr);
```

...

- In analysis macro, request RhoCandidate objects to be filled with corrected momenta by adding "Brem" to the selection string

```
PndAnalysis* theAnalysis = new PndAnalysis();
RhoCandList eplus;
while (theAnalysis->GetEvent() && i++<nevts) {
    theAnalysis->FillList(eplus, "BremElectronVeryTightMinus");
}
```


Implementation in PANDAroot (2/3)

- Alternatively, working directly with charged candidates

```
// MyTask.h:
TClonesArray* fBremCorr;
// MyTask.cxx
#include "PndPidBremCorrected4Mom.h"
    in MyTask::Init() method
fBremCorr =
    dynamic_cast<TClonesArray *> (ioman->GetObject("BremCorrected4Mom"));
// in MyTask::Exec() method
for (int j=0; j<fChargedCandList.GetLength(); ++j) {
    int trk_id = fChargedCandList[j]->GetTrackNumber();
    PndPidBremCorrected4Mom *bremCorr =
        (PndPidBremCorrected4Mom*) fBremCorr->At(trk_id);
    TVector3 mom_corrected = bremCorr->GetMomentum());
    double energy_corrected = bremCorr->GetEnergy());
}
```


Implementation in PANDAroot (3/3)

- Does not affect any analysis that doesn't request it explicitly (separate storage)
- PID consideration:
- All PID probabilities are still calculated with uncorrected momentum
- Not advisable to use corrected momenta as input for PID algorithms at this point unless PID probabilities are recomputed
- Potential to use the corrected momentum as additional input to PID algorithms
- Will be available soon in trunk release (pending approval)
- In the meantime all the relevant source files can be found here:
https://github.com/atomssa/brempatch

Conclusion

- Bremsstrahlung correction method for electrons fully debugged and implemented in PANDAroot with some improvements
- Offers improved spectra for signals with electrons in the exit channel and improved mass cut efficiency for resonances
- Simple usage instructions for simulations are provided

Backup

Performance with varying momentum (Barrel Region)

Performance with varying energy (FWD Region)

Performance with varying angles (Barrel Region)

