

PANDA Software Trigger Status/Plans

PANDA Collaboration Meeting Giessen, Mar. 2015

K. Götzen, D. Kang, R. Kliemt, F. Nerling GSI Darmstadt/HI Mainz

Software Trigger within Trigger System

Strategy for Investigation

Event Generation

- Signal
- Background

Simulation & Reconstruction

Event Filtering

- Combinatorics
- Mass Window Selection
- Trigger Specific Selection
 → Event Tagging

Global Trigger Tag

Extended Trigger Scheme

- Status report 2014
 - -n = 10 trigger lines
 - -m = 10 signal event types
 - 4 energies:
 - E_{cm} = 2.4, 3.77, 4.5, 5.5 GeV
- Extended scheme 2015
 - -n = 57 trigger lines (added subdecays and new modes)
 - Trigger of 17 different particle/reaction types
 - -m = 791 signal event types (considering different recoils)
 - 10 Recoils: / γ / π^{0} / η / $\pi^{0}\pi^{0}$ / $\pi^{+}\pi^{-}$ / $K^{+}K^{-}$ / $K^{0}K^{0}$ / $\eta\eta$ / $\pi^{+}\pi^{-}\pi^{0}$
 - 7 energies:
 - E_{cm} = 2.4, 3.0, 3.5, 3.8, 4.5, 5.0, 5.5 GeV

'Complete' List of Triggers

Tr#	Res.	Channels (BR[%])	Ν	Code	Σ BR[%]
1	η _c	K ⁺ K ⁻ π ⁰ (1.2), K _S K [±] π [∓] (2.4), γγ , K ⁺ K ⁻ π ⁺ π ⁻ π ⁰ (3.5), K _S K [±] π ⁺ π ⁻ π [∓] (1.8)	5	22x	8.3
2	J/ψ	e ⁺ e ⁻ (5.9), μ ⁺ μ ⁻ (5.9)	2	20x	11.9
3	X _{c0}	$\pi^{+} \pi^{-} K^{+} K^{-}$ (1.8), $K^{\pm} \pi^{\mp} K_{S} \pi^{0}$ (0.8)	2	24x	2.6
4	D ⁰	<mark>Κ⁻π⁺ (3.9)</mark> , Κ ⁻ π ⁺ π ⁰ (13.9), Κ ⁻ 2π ⁺ π ⁻ (8.1), Κ _s π ⁺ π ⁻ π ⁰ (3.7), Κ _s π ⁺ π ⁻ (2.0)	5	10x	31.6
5	D ⁺	<mark>Κ⁻2π⁺ (9.4)</mark> , Κ ⁻ 2π ⁺ π ⁰ (6.1), K _s 2π ⁺ π ⁻ (2.1), K _s π ⁺ π ⁰ (4.8)	4	12x	22.4
6	D _s +	K ⁺ K ⁻ π [±] (5.5), K ⁺ K ⁻ π [±] π ⁰ (5.6)	2	14x	11.1
7	D *0	D ⁰ π ⁰ (61.9), D ⁰ γ (38.1)	10	11x	31.6
8	D*+	D ⁰ π ⁺ (67.7), D ⁺ π ⁰ (30.7)	9	13x	28.7
9	D _s *+	D _s ⁺ γ (94.2)	2	15x	10.5
10	٨	p π⁻ (63.9)	1	400	63.9
11	Λ_{c}^{+}	p K [∓] π [±] (5.0), p K [∓] π [±] π ⁰ (3.4), p K _s π ⁰ (1.2)	3	42x	9.6
12	Σ+	p π ⁰ (51.6)	1	410	51.6
13	φ	K ⁺ K ⁻ (48.9)	1	500	48.9
14	e⁺ e⁻ X	NR; X = none / γ / π^0	3	60x	
15	μ⁺ μ⁻ X	NR; X = none / γ / π^0	3	62x	
16	γγΧ	NR; X = none / γ / π^0	3	64x	
17	$\gamma\pi^0$	NR	1	660	

Triggers/modes from report

All K_s mode include $BR(K_s \rightarrow \pi^+ \pi^-)$

Σ=57

Charmonia

Reaction	Trigger #	via decay	Taggable
η _c + Χ	1		8.3%
J/ψ + X	2		11.9%
$\chi_{c0}(1P) + X$	3		2.6%
$\chi_{c1}(1P) + X$	2	J/ψ γ (34,4%)	4.1%
$\chi_{c2}(1P) + X$	2	J/ψ γ (19,5%)	2.3%
h _c + X	1	η _c γ (54,3%)	4.5%
$\eta_{c}(2S) + X$			0.0%
ψ(2S) + X	2	J/ψ X (59,6%)	7.1%
ψ(3770) + X	4,5	D ⁰ <u>D</u> ⁰ (52%), D ⁺ D ⁻ (41%)	44,0%
X(3823) + X	2	χ _{c1} γ (?)	< 4.1%
X(3872) + X	2	J/ψ π ⁺ π ⁻ (>2,6%), D ⁰ D ⁰ π ⁰ (>32%)	> 17.4%
Z _c ⁺ (3900) + X	2,4,5,7,8	J/ψ π ⁺ (?), (DD*)+ (?)	< 11.9%
Z _c ⁰ (3900) + X	2	J/ψ π ⁰ (?)	< 11.9%
$\chi_{c0}(2P) + X$	4,7	D ^{0*} <u>D</u> ⁰ (>71%)	32.0%
$\chi_{c2}(2P) + X$	4,5	D <u>D</u> (?)	< 39%
X(3940) + X	4,5,7,8	D <u>D</u> * (>45% @ 90CL)	> 20%
Z ⁺ (4020) + X	7,8	D* <u>D</u> * (?)	< 49%
ψ(4040) + X	4,5	D <u>D</u> (?)	< 40%
Z ⁺ (4050) + X	2	$\chi_{c1} \pi^+$ (?)	< 4.1%
ψ(4160) + X	4,5,7,8	D <u>D</u> , D <u>D</u> *, D* <u>D</u> * (?)	< 40%
X(4160) + X	7,8	D* <u>D</u> * (?)	< 49%
X(4250) + X	2	χ _{c1} π ⁺ (?)	< 4.1%
X(4260) + X	2	J/ψ X (?)	< 11.9%
X(4350) + X	2,13	J/ψ ϕ (?)	< 54.9%
X(4360) + X	2	ψ(2S) π ⁺ π ⁻ (?)	< 7.1%
ψ(4415) + X	4,5,6,7,8,9	$D\underline{D}, D_{s}^{+}D_{s}^{-}$ (?)	< 20%
Z+(4430) + X	2	ψ(2S) π+ (?)	< 7.1%
X(4660) + X	2	ψ(2S) π ⁺ π ⁻ (?)	< 7.1%

Open Charm

Reaction	Trigger #	via decay	Taggable
D ⁰ <u>D</u> ⁰ + X	4		53.3%
D ⁰ <u>D</u> ⁰ * + X	4,7		45.0%
D ^{0*} <u>D</u> ^{0*} + X	7		35.3%
D+ D- + X	5		39.8%
D+ D-* + X	5,8		44.3%
D+* D-* + X	8		48.6%
$D_{s}^{+}D_{s}^{-} + X$	6		21.0%
$D_{s}^{+}D_{s}^{-*} + X$	6,9		20.4%
$D_{s}^{+*} D_{s}^{-*} + X$	9		19.8%
D _s ⁺ D _{s0} [*] (2317) ⁻	6	$D_{s}^{+}\pi^{0}$ (?)	>11.1%
D _s ^{+*} D _{s0} [*] (2317) ⁻	6,9	D _s ⁺ π ⁰ (?)	>10.5%
D _s ⁺ D _{s1} (2460) ⁻	6,9	D _s ^{+*} π ⁰ (48%), D _s ⁺ γ (18%)	17.3%
D _s ^{+*} D _{s1} (2460) ⁻	6,9	D _s ^{+*} π ⁰ (48%), D _s ⁺ γ (18%)	16.7%
D _s ⁺ D _{s1} (2536) ⁻	6,8	D*+ K ⁰ (85%)	32.5%
D _s ^{+*} D _{s1} (2536) ⁻	8,9	D*+ K ⁰ (85%)	32.0%
D _s ⁺ D _{s2} [*] (2573) ⁻	4,6	D ⁰ K (?)	>11.1%
D _s ^{+*} D _{s2} [*] (2573) ⁻	4,9	D ⁰ K (?)	>10.5%

Baryons & Light Hadrons

Reaction	Trigger #	via decay	Taggable
$\Lambda \underline{\Lambda} + X$	10		87.0%
$\Sigma^+ \Sigma^- + X$	12		76.5%
$\Sigma^0 \Sigma^0 + X$	10	Λγ (100%)	87.0%
$\Sigma^{-} \Sigma^{+} + X$			0.0%
$\Xi^0 \underline{\Xi}^0 + X$	10	Λ π ⁰ (99,5%)	86.7%
<u>∃</u> ⁻ <u>=</u> ⁺ + X	10	Λ π ⁻ (99,9%)	86.9%
Ω- Ω+ + X	10	Λ K(67,8%), Ξ ⁰ π ⁻ (23,6%)	82.6%
$\Lambda_{c}^{+} \underline{\Lambda}_{c}^{-} + X$	11		18.2%
$\Lambda_{c}^{+}(), \Sigma_{c}^{+}(), \Xi_{c}()$	4,11	Λ _c X (?), p D ⁰ (?)	?

Reaction	Trigger #	via decay	Taggable
φ + X	13		48.9%
e+ e-	14		100.0%
e+ e- X	14		100.0%
μ* μ-	15		100.0%
μ+ μ- Х	15		100.0%
γγ	16		100.0%
γγΧ	16		100.0%
other light hadrons	min bias		100.0%

→ Looks quite complete (at least for spectroscopy & EMP)!

Data Types

Target data modes for individual trigger lines are defined as:

- E.-M. modes (10 in total)
 - excl.: e+e- / μ + μ / $\gamma\gamma$ + (none, γ , π^0)
 - excl.: γπ⁰
- Charmonium / ϕ (up to 10 each)
 - $cc/\phi + X$
- Baryons (up to 10 each)
 - B <u>B</u> + X (and c.c.)
- Open-Charm (up to 20 each)
 - $D \underline{D} + X / D \underline{D^*} + X$ (and c.c.) for D decays
 - $D^* \underline{D^*} + X / D^* \underline{D} + X$ (and c.c.) for D* decays
- In total: up to 791 data types (depending on E_{cm})
 32 · 20 open charm + 15 · 10 cc/φ/baryons + 10 excl. 9 (too high E_{cm})

Event Based Efficiency

Only interested in event efficiencies

- 1. Event with signal X (e.g. $D^0 \rightarrow K \pi$) is tagged by corresponding trigger line due to **true/random** candidate
- 2. Event with signal X is tagged by another trigger line due to **random** candidate (*cross tagging*)

εχ

Automatized Selection Optimisation

For each trigger line (TL) @ each energy, apply procedure:

- Reconstruct signal candidates based on full event information
- Perform preselection: cut on inv. mass (+ D* mass diff. cut)
- **Define variables** for further selection:
 - Event shape variables (~ 40)
 - Candidate specific variables (~ 50, depending on decay)
- While background fraction for TL > 0.1‰ (0.05 ‰ for E_{cm} >3.5)
 - 1. Inspect all available variables
 - 2. Find variable+cut with max bkg reduction @ $\varepsilon_{signal} = 95\%$ relative to previous efficiency (*MC truth matched* signals)
 - 3. Apply cut on this variable \rightarrow re-iterate

Applied for Fast MC and Full MC

Total Background Level vs. E_{cm} (Fast & Full)

Total Efficiencies & Bgk Levels @ 2.4 GeV (Fast MC)

Efficiencies for different data modes

Acceptance of different trigger lines on DPM data

Total Efficiencies & Bgk Levels @ 2.4 GeV (Full MC)

Efficiencies for different data modes

Acceptance of different trigger lines on DPM data

Total Efficiencies & Bgk Levels @ 5.5 GeV (Fast MC)

Total Efficiencies & Bgk Levels @ 5.5 GeV (Full MC)

Total Signal Efficiencies (ϵ_{tot}) vs. E_{cm} (Fast MC)

(Each point \rightarrow selection optimization for a TL @ energy, N=247 in total)

Total Signal Efficiencies (ϵ_{tot}) vs. E_{cm} (Full MC)

(Each point \rightarrow selection optimization for a TL @ energy, N=247 in total)

Robustness of Background Level (Fast MC)

• Training with $DPM \rightarrow apply$ to events from FTF generator

Prerequisites for "reliable" prediction

#	Subject	Idea	lized	Realistic	Requires
1	Simulation detail	Fast	Sim	Full Sim	
2	Simulation stream	ever	nt based	event building (timebased)	
3	Reco quality	offlir	าย	online	8
4	Selection observables	unlir	nited	online available	2,3,8
5	Trigger signatures	ad-hoc		requested/agreed on	
6	Reliability of bkg shape	singl	e generator	various generators	
7	Pre-reco BG veto	not needed		needed (i.e. online reco impossible for all events)	2,3
8	Implementation	standard PC		dedicated hardware	
Available				Partly available Not a	available

Performance expected to drop even more with more realistic simulation.

Computing Effort for Scenario Analysis

E _{cm} [GeV]	2.4	3.0	3.5	3.8	4.5	5.0	5.5	Sum
Data modes	26	45	85	118	550	741	792	2357
Events [M]*	2.25	3.20	5.20	6.85	28.5	38.0	40.6	124.5
Optimisations	13	13	22	31	54	57	57	247

*per E_{cm}: 1M bkg events + N x 50k events/signal mode

Full Simulation

- 300,000 jobs on Prometheus@GSI (1000 events/job)
 - 1 week for simulation (2000 cores in parallel)
- ca. 20 TB of data constisting of
 - Simulation data (8.5 TB)
 - SoftTrigger specific output (11.5 TB)
- 247 automated optimisations on n-tuples & re-application
 - 10 days additional run time

Plans

- Impact on signal phase space distributions (e.g. Dalitz plots)
- Further test of robustness of efficiencies/bkg suppression
- Investigate interpolation of selection algorithms w.r.t. E_{cm}
- Systematic study of TMVA application
 - Choice of variables, TMVA types, parameter settings
- When according ingredients available
 - Impact of realistic event building & event mixing
 - Impact of online reco quality
 - Investigate pre-reco background rejection
 - Investigate performance issues (e.g. CPU demand)
 - Extend for: hypernuclei, hadrons in matter

Conclusion

- Studies of extended triggering scheme
- Developed tools for efficient scenario analysis
 - Simple configuration of trigger lines/data modes
 - Automated selection algorithms
 - Evaluation tools
- Results of Fast and Full MC differ significantly
 - Background level < 0.2% over full energy range
 - Fast MC: Typically ε_{sig} > 20%, up to 50% ... 90%
 - Full MC: Typically $\varepsilon_{sig} \approx 10\%$ (better for J/ ψ and E.M.)
- Reliable predictions of performance depend on many more prerequisites not under our control/responsibility
 - Performance will drop even more
 - Do we need a plan B?

BACKUP

Why a Software Trigger at all?

- Low signal cross sections σ_{signal} ≈ pb ... nb scale
 → Need high luminosity to achieve enough signal statistics
- High lumi L = 2·10³² cm⁻²s⁻¹ + large σ_{tot} = 50 ... 100 mb
 → Reaction rate up to 10 ... 20 MHz

 → Signal fraction ≤ O(10⁻⁴)
- Data rate with 10 kB/event: 200 GB/s
- Data amount with 50% duty cycle: 3000 PB/year
 → Completely unaffordable to store and keep all!
 → Required reduction factor ≈ 1/1000
- Signal and background events look very similar

Sophisticated event filter on high level information needed!

Event Based Efficiency

- Different cases for positive tag on signal/background
 - 1. Trigger T_X tags due to correctly reconstructed candidate X
 - 2. T_X tags due to random cand. from event containing signal X
 - 3. T_{Y} tags due to random cand. from event containing signal X
 - 4. T_i tags due to random cand. from background

 ϵ_{χ}

Recoils X under study

- 10 different recoils under consideration
- Not necessarily all recoils are accessible at the same time for a certain E_{cm}
- Data sets of one signal mode with different recoils are merged
 - → Here: Efficiencies are averaged over recoils (→ possible bias)

Number	Mode
00	no recoil
01	γ
02	π^0
03	η
04	$\pi^0 \pi^0$
05	π⁺ π⁻
06	K+ K-
07	К ⁰ <u>К</u> 0
08	ηη
09	$\pi^+ \pi^- \pi^0$

Tagging @ 2.4 GeV (Fast MC)

Tagging @ 5.5 GeV (Fast MC)

Trigger Line Decay Modes

100 : D0 -> K- pi+ cc 101 : D0 -> K- pi+ pi0 cc 102 : D0 -> K- pi+ pi+ pi- cc 103 : D0 -> K_S0 pi+ pi- cc 104 : D0 -> K_S0 pi+ pi- pi0 cc

110 : D*0 -> D0 [K- pi+] pi0 cc 111 : D*0 -> D0 [K- pi+ pi0] pi0 cc 112 : D*0 -> D0 [K- pi+ pi+ pi-] pi0 cc 113 : D*0 -> D0 [K_S0 pi+ pi-] pi0 cc 114 : D*0 -> D0 [K_S0 pi+ pi- pi0] pi0 cc

115 : D*0 -> D0 [K- pi+] gam cc 116 : D*0 -> D0 [K- pi+ pi0] gam cc 117 : D*0 -> D0 [K- pi+ pi+ pi-] gam cc 118 : D*0 -> D0 [K_S0 pi+ pi-] gam cc 119 : D*0 -> D0 [K_S0 pi+ pi- pi0] gam cc

120 : D+ -> K- pi+ pi+ cc 121 : D+ -> K- pi+ pi+ pi0 cc 122 : D+ -> K_S0 pi+ pi0 cc 123 : D+ -> K_S0 pi+ pi+ pi- cc

130 : D*+ -> D0 [K- pi+] pi+ cc 131 : D*+ -> D0 [K- pi+ pi0] pi+ cc 132 : D*+ -> D0 [K- pi+ pi+ pi-] pi+ cc 133 : D*+ -> D0 [K_S0 pi+ pi-] pi+ cc 134 : D*+ -> D0 [K_S0 pi+ pi- pi0] pi+ cc

135 : D*+ -> D+ [K- pi+ pi+] pi0 cc 136 : D*+ -> D+ [K- pi+ pi+ pi0] pi0 cc 137 : D*+ -> D+ [K_S0 pi+ pi0] pi0 cc 138 : D*+ -> D+ [K_S0 pi+ pi+ pi-] pi0 cc

140 : D_s+ -> K+ K- pi+ cc 141 : D_s+ -> K+ K- pi+ pi0 cc

150 : D*_s+ -> D_s+ [K+ K- pi+] gam cc 151 : D*_s+ -> D_s+ [K+ K- pi+ pi0] gam cc

200 : J/psi -> e+ e-201 : J/psi -> mu+ mu-

220 : eta_c -> K+ K- pi0 221 : eta_c -> K_S0 K- pi+ cc 222 : eta_c -> gam gam 223 : eta_c -> K+ K- pi+ pi- pi0 224 : eta_c -> K_S0 K- pi+ pi- pi+ cc

240 : chi_0c -> pi+ pi- K+ K-241 : chi_0c -> K+ pi- K_S0 pi0 cc 400 : Lambda0 -> proton pi- cc

410 : Sigma+ -> proton pi0 cc

420 : Lambda_c+ -> proton K- pi+ cc 421 : Lambda_c+ -> proton K- pi+ pi0 cc 422 : Lambda_c+ -> proton K_S0 pi0 cc

500 : phi -> K+ K-

600 : pbp0 -> e+ e-601 : pbp0 -> e+ e- gam 602 : pbp0 -> e+ e- pi0

620 : pbp0 -> mu+ mu-621 : pbp0 -> mu+ mu- gam 622 : pbp0 -> mu+ mu- pi0

640 : pbp0 -> gam gam 641 : pbp0 -> gam gam gam 642 : pbp0 -> gam gam pi0

660 : pbp0 -> pi0 gam

Partial tagging w/o reco + event building?

Partial tagging w/o reco + event building?

 Tag part of the signal channels before reco/event building?

 Events:
 Bkg
 Sig 1
 Sig 2
 Sig 3, 4, ...

Problems

Even with pre reco tags for Sig 1 (≈0.01%) and Sig 2 (≈0.01%)
 → Full reco needed for 99.98% of events for Sig 3, 4, ...

Partial tagging w/o reco + event building?

Tag part of the signal channels before reco/event building?

Events:	🔲 Bkg	Sig 1	Sig 2	Sig 3,
---------	-------	-------	-------	--------

Problems

- Even with pre reco tags for Sig 1 (≈0.01%) and Sig 2 (≈0.01%)
 → Full reco needed for 99.98% of events for Sig 3,...
- Without event building: What data packages to be stored?
- Pre-reco tagging only useful as common bkg veto for all signals