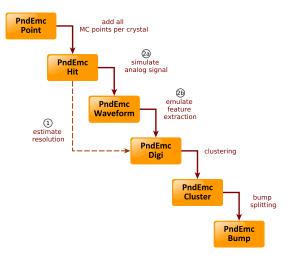
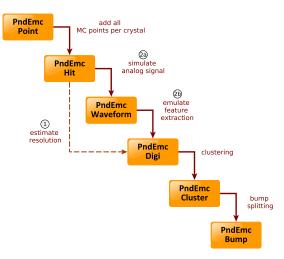
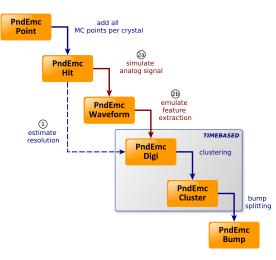
Summary of the timebased EMC simulation and reconstruction chain in PandaRoot


Philipp Mahlberg

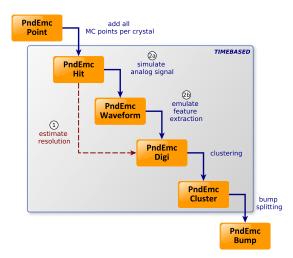


Helmholtz-Institut für Strahlen- und Kernphysik

Universität Bonn


17.03.2015

two ways of generating EmcDigis:

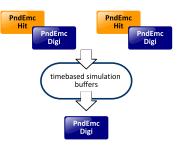

- directly out of corresponding EmcHit
- impose intermediate step:
 waveform simulation
- \rightarrow "hardware-based" description

... and making things timebased

"classical" timebased approach:

- rearrange and sort digis in time
- use smeared (or even exact) information of EmcHits ①

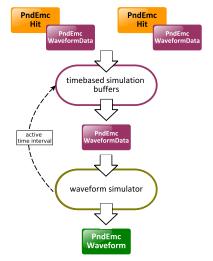
... and making things timebased


include waveform simulation:

- simulate important parts of continuous waveform stream ^(2a)
- to be processed by free-running ADC ^(2b)
- → preserve realistic signal signature

Timebased waveform simulation

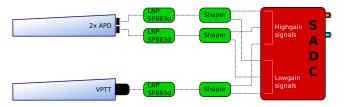
Decouple hit grouping and waveform simulation:

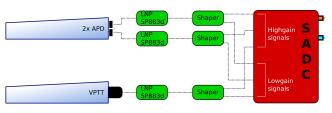

- PndEmcWaveformData stores hit(s) information (energy, time)
- ightarrow closer to digi object than waveform
 - PndEmcAbsWaveformSimulator simulates PndEmcWaveform based on PndEmcWaveformData (1 data object yields 1 waveform, including n hits)
 - PndEmcAbsPSA scans single waveforms, producing PndEmcDigi objects (n simulated hits, m recovered digis)
 - Call PndEmcDigiRingSorter ...

Timebased waveform simulation

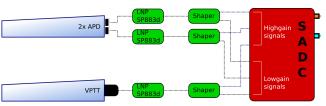
Decouple hit grouping and waveform simulation:

- PndEmcWaveformData stores hit(s) information (energy, time)
- ightarrow closer to digi object than waveform
 - PndEmcAbsWaveformSimulator simulates PndEmcWaveform based on PndEmcWaveformData (1 data object yields 1 waveform, including n hits)
 - PndEmcAbsPSA scans single waveforms, producing PndEmcDigi objects (n simulated hits, m recovered digis)
 - Call PndEmcDigiRingSorter ...

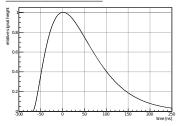

Timebased waveform simulation

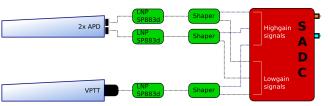

Decouple hit grouping and waveform simulation:

- PndEmcWaveformData stores hit(s) information (energy, time)
- $\rightarrow\,$ closer to digi <code>object</code> than waveform
 - PndEmcAbsWaveformSimulator simulates PndEmcWaveform based on PndEmcWaveformData (1 data object yields 1 waveform, including n hits)
 - PndEmcAbsPSA scans single waveforms, producing PndEmcDigi objects (n simulated hits, m recovered digis)
 - Call PndEmcDigiRingSorter ...


readout chain in the Forward Endcap:

readout chain in the Forward Endcap:

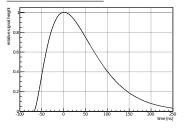

classes in PandaRoot: WaveformSimulator ↓ ShapingNoiseAdder ↓ WaveformDigitizer ↓ FeatureExtraction



readout chain in the Forward Endcap:

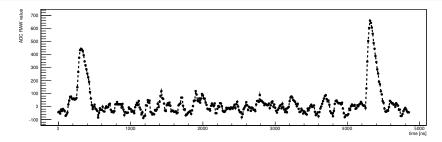
classes in PandaRoot: WaveformSimulator ↓ ShapingNoiseAdder ↓ WaveformDigitizer ↓ FeatureExtraction

fitted pulseshape:

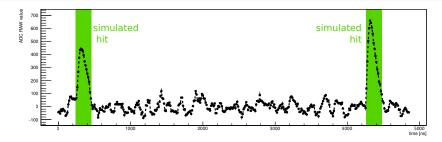


readout chain in the Forward Endcap:

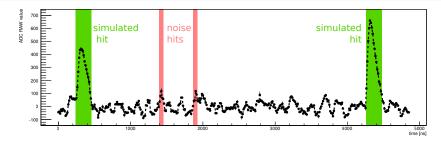
classes in PandaRoot: WaveformSimulator ↓ ShapingNoiseAdder ↓ WaveformDigitizer ↓ FeatureExtraction


fitted pulseshape:

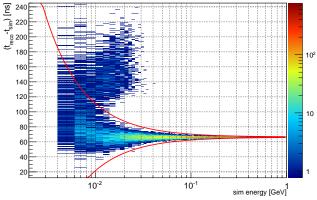
readout parameters for APD channel:


	high gain	low gain
multiplicity	$2 \times$	$2 \times$
sampling rate	80 MHz	80 MHz
channels	2 ¹⁴	2 ¹⁴
energy range	1 GeV	15 GeV
noise width	2.3 MeV	3.5 MeV

Invoke feature extraction


• resulting waveforms \longrightarrow close to hardware signal

Invoke feature extraction

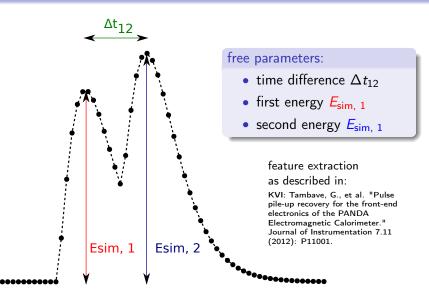

- resulting waveforms → close to hardware signal
- next step: process them by feature extraction
 - as intermediate step in simulation chain
 - to study its performance (testing, optimization)

Invoke feature extraction

- resulting waveforms \longrightarrow close to hardware signal
- next step: process them by feature extraction
 - as intermediate step in simulation chain
 - to study its performance (testing, optimization)
- include relevant noise (false posivite) hits in simulation: enlarge simulation window

Timing of reconstructed hits

• 1 × 10⁶ simulated pulses

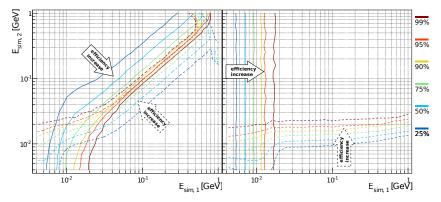

• single hit with $E_{sim} \sim \mathcal{U}(5\,\mathrm{MeV},1\,\mathrm{GeV})$

 only waveforms with 1 reconstructed hit selected

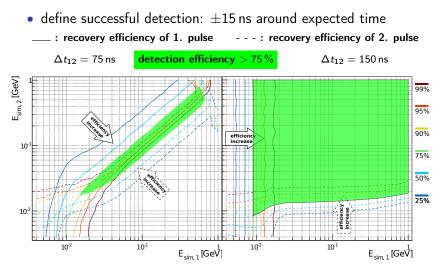
Triggerless concept demands proper hit timing:

- \lesssim 20 MeV: hit detection uncertain
- $\lesssim 10\,\text{MeV}$: hit detection fails

Testing pileup recovery capabilities

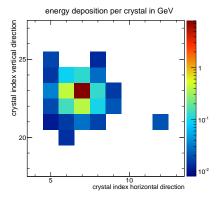


Pulse detection efficiency


• define successful detection: ± 15 ns around expected time ____: recovery efficiency of 1. pulse ____: recovery efficiency of 2. pulse

 $\Delta t_{12} = 75 \, \mathrm{ns}$

 $\Delta t_{12} = 150\,\mathrm{ns}$



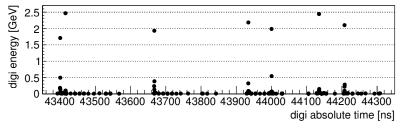
Pulse detection efficiency

• $\Delta t_{12} > 100 \text{ ns}$ for almost always successfully detection

Eventbased clustering algorithm in PandaRoot

simulation of a 10 GeV photon cluster in the Forward Endcap with split-off

1 main clustering:

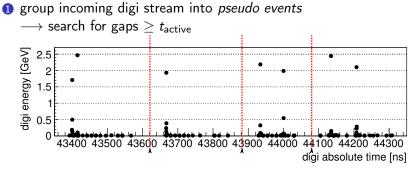

- group all fired neighboring crystals into one cluster
- ⇔ two distinct clusters are separated by inactive crystals

2 subsequent tasks:

- detect local maxima within clusters
- bump splitting

... and its timebased continuation

1 group incoming digi stream into *pseudo events* \longrightarrow search for gaps $\ge t_{\text{active}}$



- 2 perform spacial clustering on pseudo events
- **3** reimpose timing condition (*defined by* t_{active})

to any crystal already in cluster

• still use of solely energy based bumpsplitting methods

... and its timebased continuation

- 2 perform spacial clustering on pseudo events
- **3** reimpose timing condition (*defined by* t_{active})
- \Rightarrow overall clustering conditions:

 $\begin{cases} \text{space}: & \text{direct neighbor} \\ \text{time}: & \Delta t < t_{\text{active}} \end{cases} & \text{to any crystal already in cluster} \end{cases}$

• still use of solely energy based bumpsplitting methods

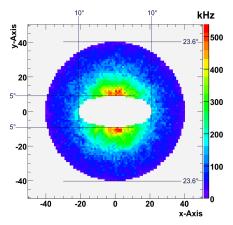
```
class PndEmcCluster {
    digi's index in
    TClonesArray
    std::vector<Int_t> fDigiList;
    std::map<Int_t, Int_t> fMemberDigiMap;
    std::map<Int_t, Int_t> fMcMap;
    ...
};
```

- cluster stores reference to incorporated digis
- \longrightarrow objects relay on (eventbased) digi grouping
 - same for MC track information handling
 - detectorID serves as key
- \longrightarrow detectorID must be unique
- \implies conflicts with idea of timebased reconstruction

the best future solution: ...

cleanest solution

Rewrite cluster class, make heavy use of FairLinks —> still reasonably performant?

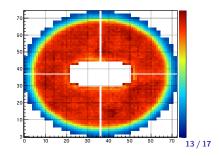

needed to do full physics simulations timebased:

MC backpropagation

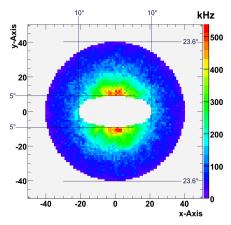
- available backpropagation broken in timebased runs
- chain of FairLinks considered to be continuous
- but PndEmcMatchTasks did not work either??

probably fixed with new version of FairLinks

Results


TDR:

expected hit rate on Forward Endcap


 $(E_{\rm hit} \ge 3 \, {
m MeV}) \ {
m 0} \ p_{\overline{
m p}} = 14 \, {
m GeV}$

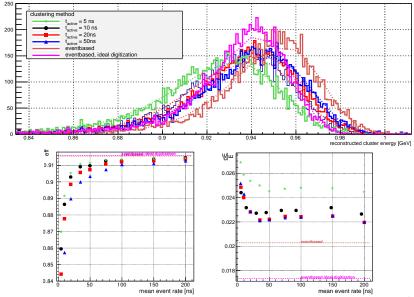
simulation:

- photons with fixed energy (no need for backpropagation)
- time between events: Poisson-distributed, characterized by τ

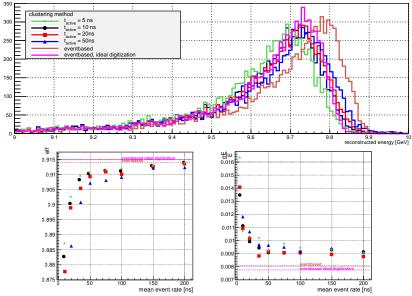
Results

TDR:

expected hit rate on Forward Endcap


 $(E_{\rm hit} \ge 3 \, {
m MeV}) \ @ \ p_{\overline{p}} = 14 \, {
m GeV}$

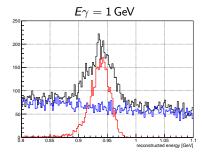
simulation:

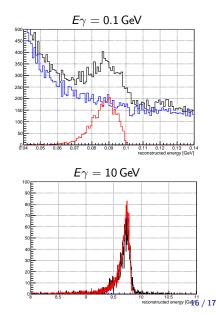

- photons with fixed energy (no need for backpropagation)
- time between events: Poisson-distributed, characterized by τ

au	$E_\gamma \ 1{ m GeV}$	E_γ
	1 GeV	10 GeV
hit rate 100 kHz	30 ns	100 ns
hit rate 500 kHz	бns	20 ns

γ with 1 GeV on Forward Endcap (N=10⁴)

γ with 10 GeV on Forward Endcap (N=10⁴)



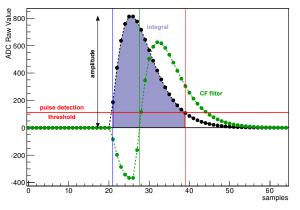

Timebased clustering: γ on DPM background

scenario:

- DPM generator background $p_{\overline{p}} = 14 \text{ GeV}, \tau = 50 \text{ ns}$
- mixed with single photons: ratio Signal/BG: 1/10
- _____ event mixing
- ____ only DPM background
- ____ only photon events

(eventbased, ideal digitization)

Conclusion


- EMC simulation and reconstruction chain has been adapted to allow for timebased simulations of:
 PndEmcDigis via generation of timebased PndEmcWaveforms and usage of experimental feature extraction
 PndEmcClusters by applying extended clustering methods: considering energy and time
- tasks to do:
 - review simulation parameters
 - conform and improve clustering stage towards timebased needs
 - \longrightarrow make MC backpropagation possible

Backup slides

Feature extraction

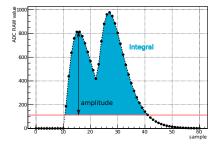
 experiment: FPGA based feature extraction (designed by KVI, Groningen)

ightarrow reproduce its behavior in simulation

pulse detection:

rigid threshold

energy features:

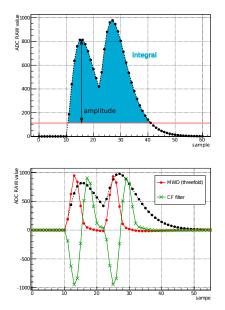

- amplitude
- integral

timing features:

 zero crossing of CF-filter value

Feature Extraction

Foreseen pileup treatment of the feature extraction:



Pileup detection & recovery of E_2 :

- define ratio $R = \frac{integral}{amplitude}$
- assumptions made:
 - amplitude not affected $\Rightarrow E_1$
 - *R* = *const* for single pulses
- pileup detected:
 R > R_{thres}
- recover E₂ as a function of: amplitude, integral, R_{mean}

Feature Extraction

Foreseen pileup treatment of the feature extraction:

Pileup detection & recovery of E_2 :

- define ratio $R = \frac{integral}{amplitude}$
- assumptions made:
 - amplitude not affected $\Rightarrow E_1$
 - *R* = *const* for single pulses
- pileup detected:
 R > R_{thres}
- recover E₂ as a function of: amplitude, integral, R_{mean}

Recovery of T_1 , T_2 :

 shorten pulses by means of threefold MWD filter