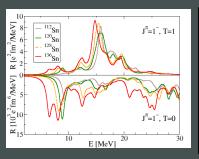
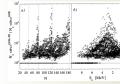
DIPOLE EXCITATIONS

A. Horvat¹

NAVI Physics Days GSI, Feb 27, 2015

¹Institut für Kernphysik, TU Darmstadt, Germany (for the R3B-LAND collaboration)





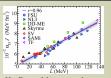
Dipole excitations in the context of astrophysics

r-process nucleosynthesis

- S. Goriely, PLB 436 (1998) 10-18
- → photo deexcitation calculation requires knowledge of B(E1) → strongly depends on the low-energy tail of GDR
- \rightarrow a low-lying resonant component would increase the rates by factors 10 -100 for some nuclei

Nuclear matter properties and the equation of state

Energy per nucleon of asymmetric nuclear matter


$$\begin{split} E(\rho,\alpha) &= E(\rho,0) + S_2(\rho)\alpha^2 + S_4(\rho)\alpha^4 + \cdots \ \alpha = \frac{N-Z}{N+Z} \\ S_2(\rho) &= J + L \cdot \frac{\rho - \rho_{sat}}{3\rho_{sat}} + \cdots \end{split}$$

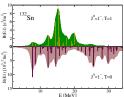
Dipole polarizability

$$lpha_D=rac{8\pi}{9}{
m e}^2\sum_
u\omega_
u^{-1}B({
m E}1,\omega_
u)=rac{\hbar c}{2\pi^2{
m e}^2}\intrac{\sigma_\gamma}{\omega^2}{
m d}\omega$$

J. Piekarewicz et al., Phys. Rev. C 85 041302(R) (2012)

X. Roca-Maza et al., Phys. Rev. C, 88 024316 (2013)

- → ab-initio approach (relatively light nuclei)
- → sophisticated shell model techniques (medium mass nuclei, astrophysical applications)
- \rightarrow self-consistent mean field models (medium heavy to heavy nuclei with many active nucleons)


Relativistic quasiparticle random phase approximation built upon a relativistic Hartree-Bogoliubov ground state (RHB+RQRPA)

 \rightarrow response to an externally applied field (small amplitude limit)

$$\hat{F}(t) = \hat{F}e^{-i\omega t} + h.c.$$

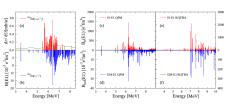
 \rightarrow discrete RPA energies, corresponding transition probabilities

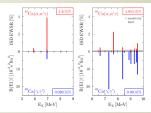
$$B(EJ; J_i \rightarrow J_f) = \frac{1}{2J_i+1} |\langle J_f || \hat{Q}_J || J_i \rangle|^2$$

DD-ME2 parametrization → G. A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, *Phys. Rev. C* 71 024312 (2005)

 \rightarrow Parameters of the effective interaction can be varied to reproduce values of J and L spanning a selected range

(parametrization from D. Vretenar, T. Nikšić, P. Ring, Phys. Rev. C 68, 024310 (2003))

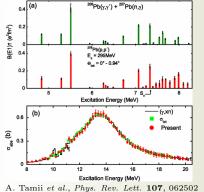

→ Heavier tin isotopes exhibit a stronger sensitivity to varying L


Stable nuclei

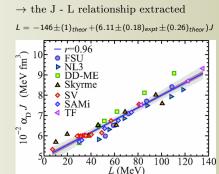
- \rightarrow real photon scattering (NRF, experiments using bremsstrahlung, laser Compton back-scattering, tagged photons) (is ovector probe)
- \rightarrow hadronic probes \rightarrow inelastic proton scattering (isovector probe)
 - \rightarrow inelastic α , ion scattering (O¹⁷) (isoscalar probe)

Stable nuclei - pygmy region

- \to $^{124}{\rm Sn},~^{138}{\rm Ba}$ and $^{140}{\rm Ce}\to$ complex isospin structure of the low-lying states \to splitting in two groups, one sensitive to the isovector probe only and other to both probes
- \rightarrow ⁴⁸Ca \rightarrow states with isovector, isoscalar and mixed character, no splitting in energy



J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)
V. Derva et al., Phys. Lett. B 730, 288 (2014)


Stable nuclei - entire spectra and dipole polarizability

Electromagnetic excitation by a 295 MeV polarized proton beam at RCNP, Osaka → data in good agreement with previous photo-absorption and photo-neutron crosssection measurements

(2013)

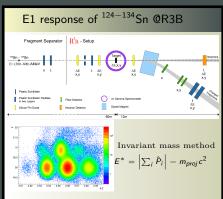
(2011)

X. Roca-Maza et al., Phys. Rev. C, 88 024316

Radioactive nuclei - inverse kinematics with radioactive beams

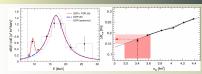
Towards systematic investigation of the evolution of dipole strength with increasing isospin asymmetry

experiments performed on neutron rich tin isotopes with complementary probes


- $\rightarrow (\alpha, \alpha' \gamma)$, inverse kinematics @RIBF, Oct 2014
 - scattering of a 200 MeV/u ^{128,132}Sn beam off a liquid helium target
 - gamma detection by DALI2 array and 8 large volume LaBr₃(Ce) detectors in forward direction
 - scattered heavy ions detected by the zero degree spectrometer

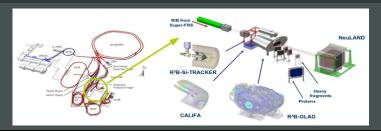
 \rightarrow Coulomb excitation (heavy ion induced electromagnetic excitation) of $^{124-134}{\rm Sn}$ at the R3B-LAND setup @GSI

 \rightarrow for b>R virtual photon scattering takes place \rightarrow B(E1) extraction, therefore α_D


 \rightarrow for b < R the nuclear interaction takes place \rightarrow possibility of extracting the neutron skin thickness from total reaction and charge changing cross section

- Excitation energy from a kinematically complete determination of all reaction products
- \rightarrow Cross section for Coulomb induced nuclear breakup reactions

$$\frac{d\sigma(E)}{dE} = \frac{16\pi^3}{9\hbar c} n_{E1}(E) \frac{dB}{dE} (E1, 0 \to J, E)$$


E1 response of ⁶⁸Ni @R3B

D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)

- \rightarrow Integrated from the neutron emission threshold
- \rightarrow If extrapolated above and below integration limit, compared to $^{208} \rm Pb$ result and RHB+QRPA calculations with DD-ME

R3B@FAIR, neutron detection

 $\mathrm{FAIR} \rightarrow \mathrm{isotopes}$ up to $^{140}\mathrm{Sn}$ and unstable Pb isotopes available

 \rightarrow Low neutron emission thresholds \rightarrow multi-neutron decays

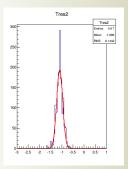
LAND

capacity

 \rightarrow Need to resolve 4 neutron hits in coincidence, improved neutron detection

iron converter \rightarrow 200 modules 200x10x10 cm \rightarrow $\sigma_t = 250ps$, $\sigma_{x,y,z} = 3cm$ \rightarrow limited multi-neutron hit reconstruction

→ Plastic scintillator +



NeuLAND \rightarrow Purely scintillator material \rightarrow 3000 modules 250x5x5 cm arranged in double planes, vertical + horizontal orientation $\rightarrow \sigma_t < 150ps$, $\sigma_{x,y,z} < 1.5cm$ \rightarrow Will be able to resolve 4n hits with 60% accuracy

R3B@FAIR, neutron detection

 \rightarrow 4 double planes completed, tested in Oct 2014

 \rightarrow $^{48}\mathrm{Ca}$ beam @ 550 MeV/u on carbon target

 \rightarrow Timing resolution for crossed bars in one double plane

$$\sigma_{75-25} = 133ps \rightarrow \sigma_t = 94ps$$

- \rightarrow Transported to RIBF in Jan 2015
- \rightarrow Appended to NEBULA neutron detector of the SAMURAI setup
- \rightarrow Awaiting physics experiments in the next appointed SAMURAI beam time

Summary

- \to Dipole excitation spectra contain valuable information on nuclear structure properties related to isospin asymmetry
- \rightarrow Many open questions to be addressed by the next generation experimental programs on dipole excitations (at R3B, S-DALINAC, RIBF, RCNP, ...)
 - ► Systematics of the dipole strength evolution with increasing isospin asymmetry
 - ► Isospin character of the low-lying dipole mode
 - ▶ Investigating the E1 response both below and above particle emission threshold
 - ▶ Providing more stringent constraints on the density dependence of the symmetry energy

