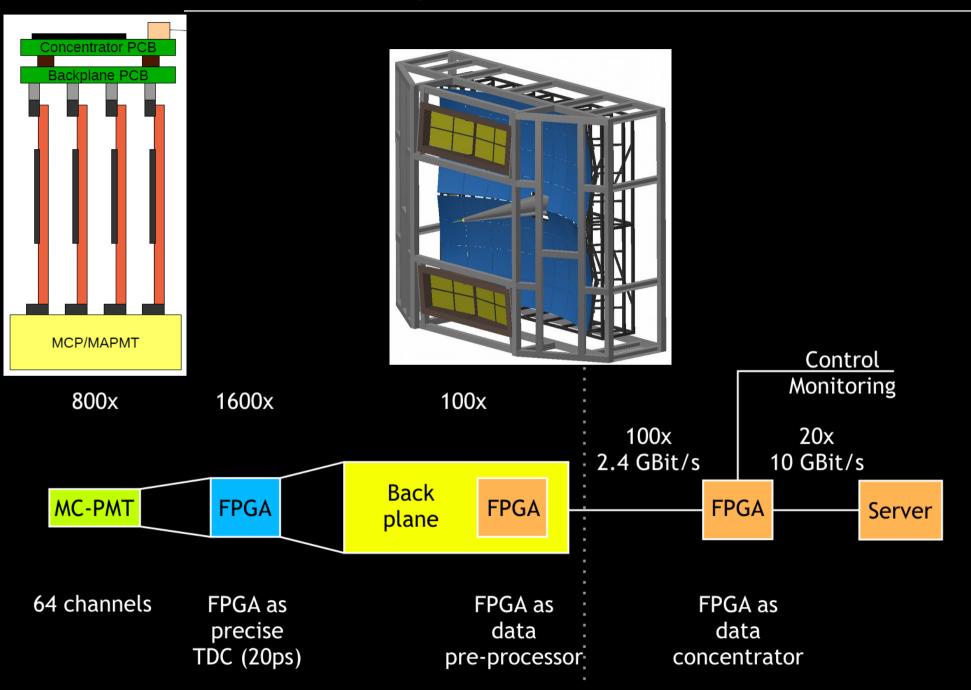

Jan Michel - Goethe Universität Frankfurt

# A FPGA network for Panda & CBM

#### Overview

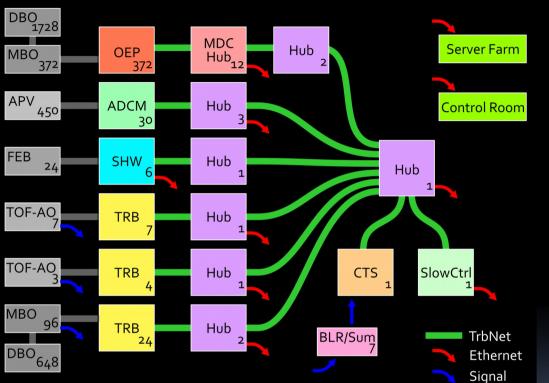

- DAQ Network Overview
  - Needed Features
  - Available Framework
- Roadmap of additional features

### CBM DAQ Network

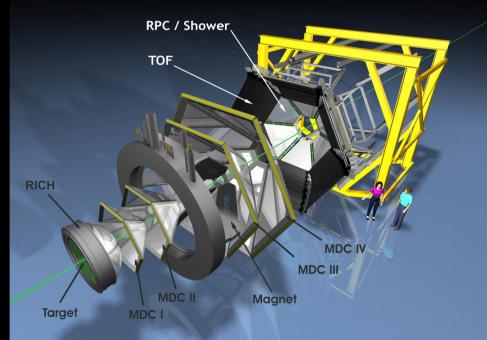


Walter Müller

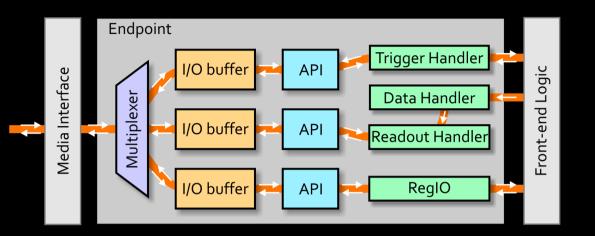
#### Example: CBM RICH




# Synergies: PANDA, CBM and HADES


- All experiments use
  - the same FPGA-based TDCs
  - a common FEE for DIRC and RICH detectors
  - a common hardware platform
  - a common inter-FPGA network
- Detector Tests last year used the same hardware for PMT read-out



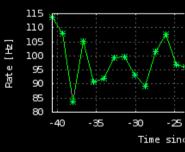

# Protocol: TrbNet (by HADES)



- Spectrometer
  - 7 detector systems
  - 50k ADC channels
  - 30k TDC channels
- DAQ System
  - 50 kHz trigger rate
  - 500 MByte/s
  - 500 Front-ends

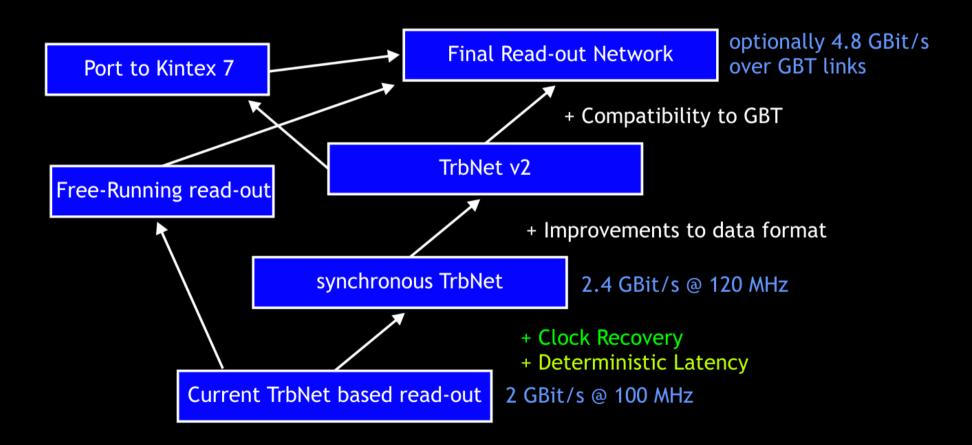


# A glance at TrbNet features



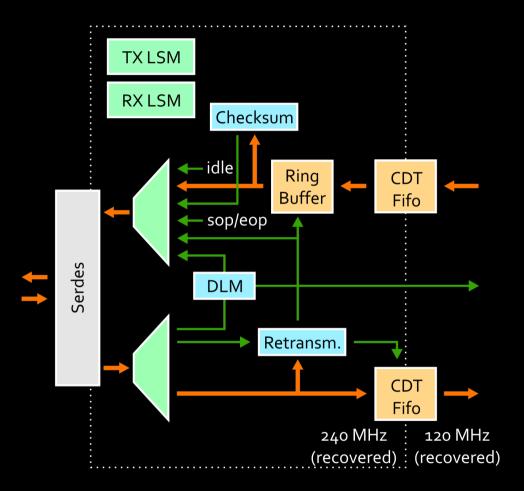

- Developed since 7 years
- Used in various setups outside of HADES
  - detector development for FAIR
- Huge software framework & hardware modules available

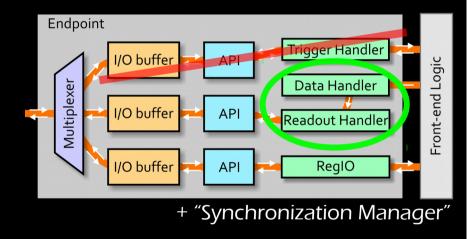
#### Central Trigger System


#### Status overview

| Counter              | Counts           | Rate                   |
|----------------------|------------------|------------------------|
| Trigger asserted     | 1215509051 clks. | 104.46 s <sup>-1</sup> |
| Trigger rising edges | 7691389 edges    | 104.46 Hz              |
| Trigger accepted     | 11432020 events  | 104.46 Hz              |
|                      |                  |                        |
| Last Idle Time       | 230120 ns        |                        |
| Last Dead Time       | 1300 ns          | 769.23 KHz             |
|                      |                  |                        |

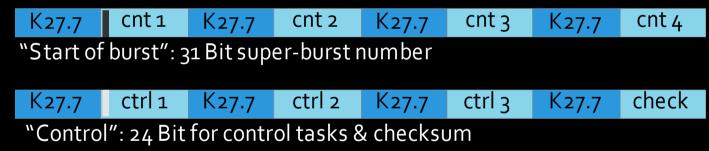



| 0240 | 0241 | 0242 | 0243 | 0250 | 0251 | 0252 | 0253 | 0 |
|------|------|------|------|------|------|------|------|---|
| 40.4 | 45.3 | 41.4 | 44.6 | 37.4 | 36.0 | 35.1 | 35.4 |   |
| 42.2 | 45.1 | 43.6 | 45.3 | 40.9 | 39.6 | 36.5 | 37.5 |   |
| 42.5 | 42.7 | 41.9 |      | 42.9 | 41.7 | 37.9 | 39.9 |   |
| 43.6 | 43.8 | 43.8 |      | 43.6 | 42.6 | 39.6 | 40.6 |   |
|      |      |      |      |      |      |      |      |   |


#### Initial Road Map



Central question: What is the best way to reach final goals?


#### **Endpoint Architecture Architecture**





### Deterministic Messages in Panda

- Define two types of messages, each with 32 Bit payload
  - "Start of burst" to mark the beginning of each super-burst (16 bursts)
    - sent in fixed intervals
  - "Control" to select different operation modes, trigger calibration...
    - checksum to prove correctness of packet
    - can be sent at any time

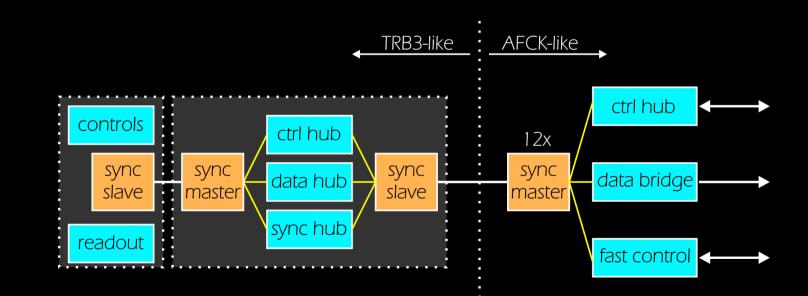


- Selection of format as simple starting solution, needs refinement
  - can we come up with a common message container?
- Link length measurement by returning messages
  - resolution: 4 ns (byte clock) is trivial, 400 ps (bit clock) could be possible

### Free-Streaming Read-out

- All front-ends send data on their own
  - no central controller
- Different schemes are possible:
  - Version 1: Continuous data stream from FEE, concentrator merges by time on a best-effort basis
  - Version 2: FEE buffers data for N byte or M µs, then sends a packet
  - Version 2a: Concentrator just forwards packets without touching them
  - Version 2b: Packets are sent synchronously by all FEE, concentrator merges all packets from same time range
- Before implementation can start, discussion about favored mode is needed

# TrbNet v2


- Original version:
  - small packets to transport low latency trigger messages
  - few comma characters because of early hardware limitations

| Name          | ID  | F0                  | <b>F</b> 1                 | F2         | F3             |  |
|---------------|-----|---------------------|----------------------------|------------|----------------|--|
| DAT           | 0x0 | 64 Bit data payload |                            |            |                |  |
| HDR           | 0x1 | source              | target                     | length     | seq.no. & type |  |
| EOB           | 0x2 | $CRC^1$             | reserved                   | word count | buffer number  |  |
| TRM (request) | 0x3 | $CRC^1$             | payload                    |            | seq.no. & type |  |
| TRM (reply)   | 0x3 | $CRC^1$             | error & status information |            | seq.no. & type |  |
| ACK           | 0x5 | resv.               | buffer size                | reserved   | buffer number  |  |

- New Version
  - variable packet size (?)
  - better inclusion of "packet start" comma and checksums
  - increase bandwidth for user data
    - 112 Bit word size instead of 80 Bit
  - optimizations in VHDL code
    - run on 32 Bit data path? different handshaking?

### Port to Kintex

- Porting the endpoint is mostly trivial Virtex 4 was already used
- Media Interface needs some experienced developers
- Adaption of control interfaces and data bridges
  - GbE as slow-control link proved very useful
  - data bridge: common system solution

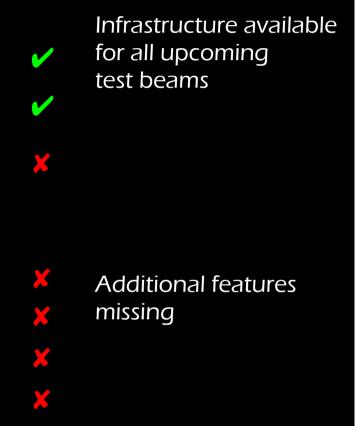


# GBT compatibility

- Transceivers are the most complicated part in a sync. network
  - we need a synchronous GBTx interface either way!
  - why not combine the high-level TrbNet protocol with a low-level GBTx interface?
    - fixed latency guaranteed by Cern, freedom for any high-level protocol
    - disadvantage<sup>-</sup> not compatible to current TDC-FPGAs



#### TrbNet over GBTx


- 112 (116?) bits free to be used
  - 6 Bit packet type / channel information
  - 10 (14) Bit checksum
  - 3 x 32 Bit payload
- Available bandwidth for data: 80%
- Packet size perfectly fitting to plans for TrbNet v2



# Work packages and status

- Data transport from 1600 FPGA
  - up to 200 kHz per channel
- Slow-control for FEE (thresholds, pedestals...)
- online monitoring (PMT signal quality, noise levels)
- time synchronization
  - better than 100ps
  - no additional cable besides optical fiber
- free-running, untriggered read-out
- Port to Kintex 7
- Fast 10G links
- Tunneling over GBT links

**/** 



#### And... what's its name?

#### Fiber-optical Advanced Inter-fpga Readout NETwork

#### And... what's its name?

#### Fiber-optical Advanced Inter-fpga Readout NETwork

#### FairNet

#### Conclusion

- Extensions to TrbNet can can provide all features needed for successful data taking in Panda & CBM
- Ouite some work
  - discussion needed
  - not a one-man-show man-power needed
- Using GBT as low-level transport layer gives a convenient, homogenous setup