

Common CBM ROB Prototype with GBTX and Versatile Link for STS-XYTER, GET4 and SPADIC Readout Chains

CBM Panda DAQ Session 09. April 2015 J. Lehnert

CBM Readout Chains

CERN GBT based solution

GBT Step1: CERN Demonstrator Board VLDB

First tests with GBT devices:

- 1. Single GBTx (& Socket)
- 2. Single VTRx
- 3. SCA
- 4. DC-DC (FEASTMP) 1.5V and 2.5V
- 5. GBTx FE E-links
- 6. GBTx and SCA configuration pins
- 7. GBTx and SCA SC e-link
- 8. I2C control bus & fuse burning bus
- 9. General power plug
- 10. GBTx TTC Clk outputs
- 11. GBTx Ref Clock Input
- 12. SCA Digital connector
 - a. SCA I2C/GPIO connectors
 - b. SCA GPIO loopback
- 13. SCA Analog connector
 - a. SCA DAC/ADC loopback
- 14. 3.3V power plug for fuse burning

CERN VLDB - Status

- first **3 prototype boards**:
 - tests finished
 - design update ongoing
- (First) production batch
 - probably will already include SCA
 - available for users in June?
- Auxiliary boards/tools:
 - SCA daughterboards (digital, analog functionality)
 - E-Link FMC board
 - USB-I2C dongle
 - I2C control of GBTx
 - Fuse programming

GBT Step2: Common CBM ROB Prototype

Next step for CBM after tests with VLDB: **Common CBM GBT prototype board (C-ROB)**

- Full GBTx, SCA and Versatile Link functionality required for readout and control of all ASIC based CBM readout chains
 - STS: (STS)CBM-XYTER
 - MUCH: CBM-XYTER
 - TRD: SPADIC2
 - TOF: GET4
- FMC connector with all frontend connectivity (GBTx E-Links and required SCA functionality)
 - → projects are free to connect to any FEE prototype or series interface, but will need to build individual interface FMCs

Detector Requirements

	STS	TOF	TRD
Readout	40 E-Links IN at 320 MHz 3 GBTX	14 E-Links IN at 320 MHz 1 GBTx	42 E-Links IN at 320 MHz (for prototype testing) 3 GBTx:
	Widebus mode for uplink		
Control/Clock	5 E-Link OUT (for up to 5 FEBs)	4 E-Link OUT (for 4 TOF_ROBs)	6 E-Link OUT
	5 user clocks (for up to 5 FEBs)	4 user clocks (for 4 TOF_ROBs)	6 user (or E-Link) clocks
SCA		JTAG	
		12 GPIO	
	I2C for GBTx control		I2C for GBTx control
	ADCs for slow control on ROB (voltages, temperature)		

Red: frontend interface

Further Requirements

"General Purpose": to be able to use the prototype boards for some generic slow control tests and applications

- SCA
 - few I2C
 - few ADCs
 - DACs
 - ...
- Full SCA functionality on second FMC? \rightarrow no

From VLDB to C-ROB

- 1 GBTX → 3 GBTX
- 1 VTRx \rightarrow 1 VTRx + 1 VTTx
- Multipurpose SCA
 - \rightarrow SCA for GBTx control (onboard)
 - 1 GBTx ("master") connected to VTRx controlled via IC channel
 - 2 GBTx connected to VTTx are controlled via I2C (from master GBTx' EC port via SCA's I2C master interfaces)
 - \rightarrow subset of SCA slow control functionality
 - GPIO and JTAG for TOF
 - Selection of multipurpose functionality: ADCs, DAC, I2C,..
- 20 full e-ports on HDMI connectors
 - → E-Port and Clocks on **FMC connector**
 - 14 + 14 + 14 E-ports (IN)
 - Full readout bandwidth for 320 Mbps E-links both with widebus and GBT (10+10+10 ports) frames for the uplink
 - Subset of E-links at 160 Mbps or 80 Mbps (for testing)
 - few E-ports (OUT)
 - few E-clks and user clocks (phase adjustable)

extensions to VLDB functionality reduced functionality wrt VLDB

Common ROB Block Diagram

Common ROB - FMC

Device	Functionality	Units Connected to FMC
GBTX Master	E-Link IN	14
	E-Link OUT	6
	E-Link Clk	6
	User Clk	6
Slave GBTX 1/2	E-Link IN	14/14
	E-Link OUT	0
	E-Link Clk	0
	User Clk	0
SCA	GPIO	12
	JTAG	1
	ADC	8
	DAQ	2
	12C	4
	SPI	1
	Secondary E- Port	1
		164 Signals

Fits on single HPC FMC

Common ROB – Prototype Character

Keep some flexibility (and variability) in configuration and usage options

- for the different readout chains
- for additional testing

e.g.

- GBTX modes (transceiver type; frame type)
- E-Fusing option
- powering (FEAST MP onboard?)
- E-link clocks vs phase adjustable user clocks
- Misc signals: TxDataValid, GPIO external clock,...

Test and slow control connector with e.g.

- Reset
- Rx/TxRdy
- RxDataValid
- device test signals?

• ...

The above items -and others- have to be finally agreed upon...

Current Status

Common ROB

- basic detector requirements collected
- general board concept
- details to be finalized (e.g. required GBTx configuration options,...)
- start of schematics with revised VLDB design from CERN
- layout after tests with VLDB
- Goal: readout chain (STS) with C-ROB end of 2015

GBTx/Versatile Link

- GBTx and VL components ordered
 - Pre-production devices available ~summer 2015
 - Full production run planned for second half of 2015

13

GBT Step(s) 3: Detector Specific ROBs - STS

For STS: fully featured STS ROB-3 prototype

Challenges

- Radiation
 - up to 100krad and 5x10¹³ n_{eq}/cm² in ROB locations over expected total operation time
- Magnetic Field
 - operation inside 1T dipole magnet
- Space
 - ROB size: approx. 83mm between side cooling plates of adjacent units
 - FEB connections: routing volumes, connector size
- Cooling
 - sensors operated at <= -5° Celsius
- Powering Scheme
 - FEBs operated at individual sensor potentials
 → AC coupling of FEB-ROB e-links

Quarter Station (every 2nd ladder)

STS ROB Prototype

Possible STS ROB-3:

Dimensions: 196 mm x 36 mm

One or more ROB-3, ROB-5 or ROB-7 on each detector module

David Emschermann 15

TOF Readout with GBTx

Simple Block diagram for 1280 Channel, 1GBTx for 4 ROBs

- GBTx equipped on one ROB
- JTAG chain for scrubbing up to 4 ROB

→ Andrei Oancea

Summary

FMC connector as FE interface

Backup

STS Readout Chain

STS Readout Board (ROB)

1 master GBTx connected to 1 VTRx transceiver

2 slave GBTx connected to 1 VTTx (twin transmitter)

- Slow control, clock distribution
- Data readout

• Data readout, control responses

1 SCA as slow control interface from master to slaves

ASIC Data Volume and Readout Links

 use fastest E-Links (320 Mb/s) Worst Case RO Scenario: configurable number of E-Links in each ASIC: 1,2,5 35 AGeV Au+Au nominal beam (10⁹) & **FEB Types:** FEB-2 **FEB-1** FEB-5 interaction(10⁷) rates **1**x320 **2**x320 **5**x320 Mbit/s delta electrons /ASIC (mirrored left/right!) 2200 STS geometry 13d 2000 shielding from support 1800 structures Number of ASICs • 30bits/hit 1600 6% protocol overhead 1400 Station1 ASIC Hit Rate in MHz 100 1200 1000 0.000 10.0.01 0.0.00 800 10 600 400 1010101 1 200 10000 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 0 ASIC data volume in Mbit/s

FEB Types and ROB Connectivity

FEB Types and ROB Connectivity

STS Status

• **STS-XYTER** ASIC

version2 being prepared for submission

- implements E-Link interface (configurable up to 5 x 320 Mbit/s E-links)
- implements newly developed dedicated readout and control protocol
- Readout and Control Protocol
 - synchronous protocol
 - optimized for secure control (downlink) and efficient readout (uplink)
 - verification ongoing
- CERN VLDB (Versatile Link Demonstrator Board)
 - single GBTx, VTRx, SCA: soon available for user tests
- Common CBM ROB Prototype
 - Full GBTx/VL functionality for all CBM ASIC readout chains (STS, TOF, TRD)
 - 1 master with VTRx and 2 slave GBTx (via SCA and I2C) with VTTx
 - frontend connectivity (GBTx E-Links, SCA) routed to FMC connector
 - specification phase
- CBM Detector Specific ROBs
 - GBT and Versatile Link components ordered: ~1000 ROBs for STS

CERN GBT and Versatile Link System

Goal

• Optical link for transfer of **data**, **slow control**, **clock**, **trigger** between

"Outside" (counting room, service building) radiation free environment Detector area significant radiation levels

Two complementary projects of CERN(PH-ESE) & collaborators

- GigaBit Transceiver : "develops and qualifies the required radiation hard ASICs"
 - GBTx ASIC: data transceiver
 - GBT-SCA: slow control ASIC
- Versatile Link: "selects and qualifies appropriate opto-electronic components for use in radiation environment"
 - VTRx (optical transceiver) and VTTx (optical twin transmitter): custom modules

Status

- prototypes tested; preparation for mass production
- single production run; next device generation in a few years (for LS3 upgrades)
- projected schedule: samples in mid 2015, larger quantities in 2016 developed mainly for LHC LS2 upgrades 2018/19 – consistent with CBM timeline

Features of GBT/VL Based Readout

- symmetrical, bi-directional data transmission
 - 3.2 Gbit/s user bandwidth; in uplink 4.48 Gbits/s possible (without forward error correction)
- frontend side: 10 to 40 E-links: SLVS based with 320, 160 or 80 Mbit/s
 - data from e-link ports are multiplexed/demultiplexed in the GBT data stream
 - transparent to user protocol, no buffering or load balancing
- deterministic latency in both directions
- radiation hard
 - mass production will be qualified for 1 MRad total dose, 5x10¹⁴ n_{eq}/cm²
- GBTx power
 - configuration dependent: <1.5W typical; 2.2W max.

VTRx (front) with SFP+ for comparison

The GBT System

http://cern.ch/proj-gbt

Paulo.Moreira@cern.ch