

MVD Strip Front-end Electronics Status

Institut

The PANDA MVD Strip Detector

-Innermost detector of the PANDA Target Spectrometer -Located at the crossing of beam pipe and target pipe

-Tracking of charged particles -Vertex reconstruction for primary and secondary vertices

-Improvement of momentum resolution and PID

The PANDA MVD Strip Detector

- Hybrid silicon pixel sensors
- Double-sided silicon strip sensors
- 4 barrel layers
 - 2 pixel barrels
 - 2 strip barrels
- 6 disk layers
 - 4 pixel disks
 - 2 mixed disks (inner pixel, outer strips)

The PANDA MVD Strip Detector

- Hybrid silicon pixel sensors
- Double-sided silicon strip sensors
- 4 barrel layers
 - 2 pixel barrels
 - 2 strip barrels
- 6 disk layers
 - 4 pixel disks
 - 2 mixed disks (inner pixel, outer strips)
- 200,000 strip channels \rightarrow 3112 front-ends (64 chn.) self-triggering readout!

Strip DAQ Chain

Strip DAQ Chain

Strip Detectors

- Barrel sensors
 - rectangular 60x35 mm² 896+512 strips

Institut

- square 35x35 mm² 512+512 strips
- 65 µm strip pitch
 - \rightarrow 130 µm readout pitch

- **Disk sensors**
 - trapezoidal 58 mm high, 37 mm long side

- 768+768 strips
- 15° stereo angle
- 45 µm strip pitch \rightarrow 90 µm readout pitch

JLU Gießen

IKP Jülich

II. Physikalisches Institut

Strip Detectors

- Barrel sensors
 - rectangular 60x35 mm² 896+512 strips
 - square 35x35 mm² 512+512 strips
- 65 µm strip pitch
 - \rightarrow 130 µm readout pitch

- **Disk sensors**
 - trapezoidal 58 mm high, 37 mm long side 768+768 strips
- 15° stereo angle
- 45 µm strip pitch \rightarrow 90 µm readout pitch

Batche

roduced

JLU Gießen

Sens

IKP Jülich

FSSEN

PASTA

- 200,000 channels on 296 sensors need to be read out

Institut

- PASTA PANDA Strip ASIC -
- Measurement concept inspired by TOFPET architecture
 - ASIC for SiPM readout from EndoTOFPET-US collaboration
 - self-triggering, fully digital back-end
- Complete redesign of analog stage for strip detectors
- Time-over-Threshold (ToT) using analog interpolators
 - multiple ToT stages to reduce pile-up
 - low power consumption
 - precise time resolution
- Joint development of: •
 - University Gießen
 - Forschungszentrum Jülich
 - **INFN** Torino

PASTA

- **Requirements:** •
 - event rate up to 40 kHz per strip
 - detector capacitance 10-25 pF
 - input charge 1-40 pC (10 MIPs)
- Goals: •
 - linear time measurement with input charge

Institut

- 8 bit dynamic range
- 50-200 ps time bin width
- noise < 1500 e⁻
- power consumption < 4 mW/chn

PASTA

- Architecture of the chip ullet
 - 2 discriminators for each of the 64 channels

Institut

4 time-to-analog converters (TAC) per discriminator •

technical advisors: A. Rivetti, M. Rolo

Institut

PASTA Features

- Dual threshold concept •
 - time information t₁ from lower threshold Vth_T \rightarrow reduce time-walk
 - hit validation from higher threshold Vth E
 - ToT: t1 to t3

- Time measurement
 - coarse time from chip clock
 - fine time from interpolation (interpolation factor 128x @160 MHz \rightarrow 50 ps bin size)

- Analog front-end
- Design carried out by Valentino Di Pietro •

Institut

peaking time ~ 30 ns

II. Physikalisches Institut

PASTA Front-end

- Analog front-end
 - Design comprises
 - preamplifier
 - calibration circuit
 - peaking time adjuster
 - current buffer
 - ToT amplifier
 - baseline restorer
 - hysteresis comperators
 - delay line
 - local DACs

PASTA Front-end

- Analog front-end
- Calibration pulse to front-end
 - amplitude controlled via 6 bit DAC
 - initiated by a test pulse
 - source of test pulse:
 - external signal from I/O pad
 - internal pulse generated by GCTRL
- Test pulse to TDC controller
 - initiates TDC ramping without front-end

Institut

test readout independent of front-end input

- Linearity from simulations ullet
 - good linearity at low input charges
 - deviations compensated by calibration

Institut

- Linearity from simulations •
 - good linearity at low input charges
 - deviations compensated by calibration

Institut

R. Schnell, PANDA DAQT-FEE Workshop, GSI - April 9/10, 2015

- Noise (ENC) from simulations •
 - p-side: 500 e⁻ @ 20 pF
 - case of application: 350 e- @ 10 pF

Institut

- Noise (ENC) from simulations •
 - n-side: 600 e⁻ @ 20 pF
 - case of application: 550 e- @ 17 pF

Institut

PASTA TDC

- Time-to-Digital-Converter
- Design carried out by Alberto Riccardi •

Institut

Institut

Institut

PASTA TDC

- TDC Implementation

Institut

PASTA TDC

- TDC Implementation

Institut

PASTA TDC

- TDC Implementation

Institut

PASTA TDC

- TDC Implementation

PASTA Digital Control

- **TDC Control and Global Control** _
- Design carried out by André Goerres •

Institut

JIESSEN

PASTA Digital Control

- TDC Control and Global Control
 - Design carried out by André Goerres
 - Rewritten TDC Control code with major simplification •
 - area reduction: $0.11 \,\mu\text{m}^2$ to $0.01 \,\mu\text{m}^2$

Institut

- power reduction: 1.57 mW/chn to 0.25 mW/chn
- Integration of SEU mitigation techniques
 - protect all state machines and device registers
 - Hamming encoding
 - triple-modular redundancy

PASTA Digital Control

- TDC Control and Global Control
- New features/components included
 - (optinal) skip validation
 - (de-)select use of delay line
 - synchronization chain to prevent event losses

Institut

- asynchronous FIFO for TX data
- refresh control per TAC
- internal clock divider

PASTA Bugfixing (1)

- Example on TDC Post-Layout Simulations

Institut

PASTA Bugfixing (1)

- Example on TDC Post-Layout Simulations

PASTA Bugfixing (1)

- Example on TDC Post-Layout Simulations

Institut

PASTA Bugfixing (2)

- Example on Front-end Post-Integration Simulations

Institut

16 Channels + Bias

PASTA Bugfixing (2)

- Example on Front-end Post-Integration Simulations

PASTA Bugfixing (2)

- Example on Front-end Post-Integration Simulations

Institut

64 Channels + Bias

PASTA Chip

analog front-end

analog TDC

Institut

Layout screen-shots

digital **TDC controller**

complete channel

200 µm gap with Pminus shell to increase resistance of substrate

II. Physikalisches Institut

PASTA Chip

4.54 mm (4.09 mm)

64 channels (without global control)

Layout screen-shots

PASTA Chip panda global controller complete ASIC 4.72 mm(4.25 *mm*) **TDC** controller 5.00 mm (4.50 mm) to scale 🛰 0.84 mm (0.76 mm) 3.78 mm (3.40 mm) André Goerres | HK50.2 Instrumentation 11 R. Schnell, PANDA DAQT-FEE Workshop, GSI - April 9/10, 2015

32

PASTA Status

Power consumption based on simulations •

Institut

front-end	TDC	TDC ctrl	global ctrl	drivers	total
1.0	0.4	0.25	60.0	4 x 8.5	3.12
mW/ch	mW/ch	mW/ch	mW	mW	mW/ch

- target value: < 4.0 mW/ch
- (LVDS drivers instead of SLVS) •

PASTA Outlook

- Analog and digital designs combined •
- Implement last modifications
- Complete fixing of issues detected from simulations
- Perform last post-integration simulations to verify design •
- Submit the chip to the foundry in April 2015 • (3-4 months to get the first prototype)

Institut

Prepare test system for PASTA prototype tests

Strip DAQ Chain

Module Data Concentrator (MDC)

- Data Concentrator ASIC at the stave level

Institut

- Multiplexes all front-ends of one sensor
 - up to 12 front-ends per MDC
 - needs galvanic isolation of data lines, DC-balanced code
- Slow control interface to front-end chips
- Data concentration and feature extraction

Module Data Concentrator (MDC)

Module Data Concentrator (MDC)

Power estimation

basic design	68 mW		
full design	200 mW		
SLVS-I/Os	93 mW		
Total basic	161 mW		
Total full	293 mW		

- Chip size estimation
 - 5.0 MGates \rightarrow approx. 22 mm² @ 230 kgates/mm²
 - 118 pads
- Use same commercial 110nm technology as PASTA
 - triple modular redundancy for all critical components

Module Data Concentrator (MDC)

- Status as of March 2015
 - designed versions with/without feature extraction

Institut

- design and simulation of FPGA prototype (VHDL-based) is finished for:
 - 12:1 Multiplexer
 - FIFO
 - front-end interface
 - 10b/8b-decoding
 - triple redundancy
- under simulation: triple redundancy
- under design/simulation: clustering/hitfinder
- to be done:
 - status and control
 - e-link
 - slow control

Strip DAQ Chain

Institut

Thank you for your Attention

GBT

- Additional data concentration level
- Multiplexes several MDCs connected via e-link protocol
- Placed close to MVD •
 - reduce length of electrical links
- Fast optical links towards off-detector electronic

Institut

3.2 Gbps user data rate

MVD Multiplexer Board (MMB)

- Off-detector electronics of the MVD
- (Developed in the Helmholtz Association of German Research Centers)
- MTCA.4 compatible AMC module
 - based on Xilinx Kintex-7 FPGA
 - 4 SFP/SFP+ cages (GTX transceiver)

H. Kleines, M. Drochner, P. Wüstner ZEA-2, FZ Jülich

- Connection to PANDA time distribution system (SODANET)
- Sends data to global PANDA DAQ system (Compute Nodes)

