FPGA-TDC Status and Plans

Cahit Uğur¹

¹ GSI Helmholtz Centre for Heavy Ion Research, Darmstadt – Germany

Joint CBM / Panda DAQ Developments "Kick-off" Meeting 19-20 February 2015, GSI

Outline

- TDC status Single/Double Edge Measurements
- Applications
- Future Plans

Conclusion & Outlook

- Tapped Delay Line for fine time interpolator
- Coarse & Epoch counters for long measurement range
- Stretcher for short pulses & double edge
- Decoder: thermocode \rightarrow binary
- Ring buffer
- Calibration hits from an on-chip oscillator

Simplified architecture of the TDC

hit

 t_{e2}

hit

Tapped Delay Line method with common stop signal

•
$$\Delta t = (t_{e2} + t_{c2} - t_{f2}) - (t_{e1} + t_{c1} - t_{f1})$$

RMS measured on two channel: ~10 ps

Stretcher for short pulses (~500 ps)

Time precision - ToF

Single edge measurement RMS ~10 ps ΔRMS < 3 ps

Precision vs mean

Time precision - ToF

Single edge measurement RMS ~10 ps ΔRMS < 3 ps

Precision vs mean

ToT measurement on 2 channels Short pulse measurement

ToT on 2 channels

Time precision - ToF

Single edge measurement RMS ~10 ps ΔRMS < 3 ps

Precision vs mean

ToT measurement on 2 channels Short pulse measurement

ToT on 2 channels

ToT measurement on a single channel

ToT on a single channel

TRB3

Febex3 & Tamex3

- Similar results are obtained from all of the devices
- No curve fittings or cuts are applied to the results
- The TDC can be adapted for ToF, ToT or Charge measurements

CbmTof & CbmRich

Febex2

Tested with

- PaDiWa Amps for charge measurements
- Tested in lab with pulser and in gamma beam in Mainz (MAMI)
- Charge precision in lab: 0.5% (no walk correction)

PaDiWa FEE

- Pulser test: ~23 ps
- Single phototelectron laser test with MCP: ~70ps

Tested with

- CBM-RICH in October 2012
- FEE + 65 Ch TDC
- 83ps RMS due to FEE design error

- TAMEX in September 2014 • Time (10ps) & Charge (0,9%) measurements
- Full detector precision 36ps

The plans are ...

- to finalise the tests of the double edge measurement in a single channel
- to increase the number of channels per FPGA (back) to 64
- to increase the TDC clock frequency to 240MHz (or better 360MHz) for a synchronous system – PANDA & CBM
- to implement TDC in the next generation Lattice FPGA ECP5 for the DIRICH board

• DIRC-RICH → DIRICH: Joint development of Panda-DIRC, CBM-RICH and HADES-RICH

- Padiwa + TDC
- Higher Integration needed to put TDC also on Padiwa
- We have to keep form factor → ECP3-150 too big
- New Lattice-FPGA available: ECP5-85F
 - 32 channels ToT, ~10ps precision TDC
 - Very good price: ~40€
 - 4 channels <3.2Gbps, 1.1V, 80mW static power
 - 17x17mm² for 381caBGA (same size as MachXO2)
 - All features needed

Optical Fibre

Power Cables

Power Supply

linear

ERM5

pin

=100

connector

MCP/MAPMT

Low Power Amps

- 24dB

2mm connector

bin

32

- Currently:
- MMICS
- BGA2803
- 13mW/ch.

ECP5 FPGA

- Discriminator (LVDS inputs)
- High precision
- (~10ps RMS)TDC
- DAQ via TRB-Net
- <3Gbps-Transceivers
- Scalers, etc.
 - e.g. coincidence logic

 Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels

 Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels

Tested with different FEE and AddOn boards

 Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels

Tested with different FEE and AddOn boards

FPGA based simple FEE: promising lab and test beams first results

 Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels

Tested with different FEE and AddOn boards

FPGA based simple FEE: promising lab and test beams first results

• Double edge detection in single TDC channel under tests, also in beamtime

- Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels
- Tested with different FEE and AddOn boards
- FPGA based simple FEE: promising lab and test beams first results

- Double edge detection in single TDC channel under tests, also in beamtime
- 64 channels in single FPGA

- Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels
- Tested with different FEE and AddOn boards
- FPGA based simple FEE: promising lab and test beams first results

- Double edge detection in single TDC channel under tests, also in beamtime
- 64 channels in single FPGA
- TDC @240MHz (or better 360MHz) for synchronous system PANDA & CBM

- Multi-purpose FPGA based TDC with 48 channels Precision <20ps RMS on all channels
- Tested with different FEE and AddOn boards
- FPGA based simple FEE: promising lab and test beams first results

- Double edge detection in single TDC channel under tests, also in beamtime
- 64 channels in single FPGA
- TDC @240MHz (or better 360MHz) for synchronous system PANDA & CBM
- TDC on DIRICH

TRB3 Community

Developers

Cahit Uğur Jan Michel Grzegorz Korcyl Manuel Penshuck Michael Traxler Ludwig Meier Jörn Adamczewski-Musch Sergey Linev Matthias Hoek TDC TrbNet & DAQ GbE CTS Organisation & Hardware Slow Control Software DAQ & Analysis DAQ & Analysis Unpacking & Analysis

Active Users

Marek Pałka Adrian Zink Christian Pauly Andreas Neiser

PANDA DIRC Groups in Mainz & GSI CBM RICH & CBM ToF

Detector Groups

PANDA Barrel DIRC PANDA ToF CBM – RICH HADES MDC FEE Mainz A2 Collaboration

PANDA Disk DIRC CBM Forward Calorimeter CBM – ToF HADES Calorimeter Mainz Neutron Detector

Coimbra PET Scanner ATLAS

and many more to come...

Thank you!

Backup Slides

Tapped Delay Line Method

- Tapped delay line is used for fine time measurements – suits well with the FPGA architecture
- Delay elements are realised by LUTs
- Fast carry chain structure forms the delay line
- Registers are used to sample the delay line

Tapped Delay Line Method

PFU Diagram

Laboratory Test Results

- Time difference measured between 2 channels
- $\Delta t = (t_{coarse1} t_{coarse2}) (t_{fine1} t_{fine2})$
- RMS measured: 10.34 ps against the same clock
- Precision: 10.34 ps / $\sqrt{2}$ = 7.3 ps RMS

Time precision test

Mean measurement test

Architecture of TDC

Lattice ECP2M FPGA Slice Diagram, PFU Diagram and Floor-plan

- Effect of longer inter-slice routings
- Effect of PFU architecture

- Effect of primary clock line in the FPGA
- Effect of longer inter-slice routings
- Effect of PFU architecture

- Effect of primary clock line in the FPGA
- Effect of longer inter-slice
 routings
- Effect of PFU architecture

Wave Union Launcher

- More than one delay line is necessary in order to reduce the effect of wide bins
- Wave union launcher is implemented

•

Bin widths & non-linearities are reduced

Wave Union Launcher

Bins: ~520

Mean: ~10 ps Max: ~35 ps

- More virtual bins
- Narrower bins
- Homogeneous bin distributio

Statistical Error & Precision

- Time difference measured between 2 channels
- $\Delta t = (t_{coarse1} t_{coarse2}) (t_{fine1} t_{fine2})$
- RMS measured: 10.34 ps against same clock
- Precision: 10.34 ps / √2 = 7.3 ps
- Effect of 2 transitions:

14.82 ps / 10.34 ps = 1.43 factor

Precision vs Temperature

RMS vs Temperature

RMS – UnCal (31-500) RMS – Cal RMS – 31.5Cal RMS – UnCal (correct limits)

Precision & Mean vs Statistics

RMS - Mean vs Hit #

Central Trigger System

Status overview

Count	er		Counts	Rate		350000							
Trigger asserted			398594099 clks.	300.30 Kcnt/s	0 Kcnt/s 3000 0.30 KHz 2500 9.54 KHz 2000							Edges -	
Trigger rising edges			398594099 edges	300.30 KHz						×××		××××	****
Trigger accepted			90048920 events	269.54 KHz									
Last Id	lle Time		1650 ns		te te	150000							
Last Dead Time			1680 ns	595.24 KHz	15.24 KHz 🖁		<u> </u>	***	 ð				
Throttle	е		Limit Trigger Rate to 1 KHz			50000				V.			
Eull St	on						- 30	-25	- 20	-15	-10	-5	0
i un ot	op						Time sinc	e last up	date [s]				
Export	CTS Co	nfiguration	as TrbCmd scrip	t as shell script		Clic	k on the	image to s	witch betwe	en short an	d long plotting	a intervals	s
Trigge	er Chai	nnels											
# Ei	nable	Trg. Cond.	Assignment	TrbNet T	ype						Asse	rted	Edges
0		R. Edge 🗘	Ext. Logic - CBM	0×1_pysic	s_trigger		0				1370.38	cnt/s	124.58 Hz
1	\checkmark	R. Edge 😂	Periodical Pulser 0	0×1_pysic	Ox1_pysics_ttigger Ox1_pysics_ttigger Ox1_pysics_ttigger Ox1_pysics_ttigger								300.30 KHz 25.00 MHz 0.00 Hz
2		R. Edge 🗘	Periodical Pulser 1	0x1_pysic									
3		R. Edge 🗘	Periodical Pulser 2	0x1_pysic									
4		R. Edge 0	Periodical Pulser 3	Ox1_pysic	s_trigger		0.00 cm				cnt/s	0.00 Hz	
5		R. Edge 0	Random Pulser 0	Ox1_pysic	Ox1_pysics_trigger			149.76 Kcnt/s					149.51 KHz
6		R. Edge \$	Trigger Input 0	0×1_pysic	0x1_pysics_trigger			20.00 Mcnt/s			cnt/s	125.56 Hz	
7		R. Edge \$	Trigger Input 1	0×1_pysic	:s_trigger		\$]				0.00	cnt/s	0.00 Hz
8		R. Edge \$	Trigger Input 2	0×1_pysic	:s_trigger		0				269.54 K	cnt/s	269.54 KHz
9		R. Edge \$	Trigger Input 3	0×1_pysic	:s_trigger		\$				100.00 M	cnt/s	0.00 Hz
10		R. Edge \$	Coincidence Module 0	0×1_pysic	s_trigger		10				100.00 M	cnt/s	0.00 Hz
11		R. Edge \$	Coincidence Module 1	0×1_pysic	:s_trigger		\$				100.00 M	cnt/s	0.00 Hz
12		R. Edge \$	Coincidence Module 2	0×1_pysic	s_trigger		0				100.00 M	cnt/s	0.00 Hz
13		R. Edge 🗘	Coincidence Module 3	0×1_pysic	s_trigger		0				100.00 M	cnt/s	0.00 Hz
				-									

Trigger Input Configuration and Coincidence Detectors

			Input Mod	lules		Coincidence Detectors					
#	Inp. Rate	Invert	Delay	Spike Rej.	Override	# Window	Coin Mask (3:0)	Inhibit Mask (3:0)			
0	125.56 Hz		o ns	o ns	bypass 0	0 150 ns					
1	0.00 Hz		o ns	o ns	bypass 🗢	1 150 ns					
2	269.54 KHz		0 ns	o ns	bypass 🗢	2 150 ns					
3	0.00 Hz		ns	ns	bypass 0	3 150 ns					

Per	iodical Pulsers	Random Pulsers								
#	Low-Period F	requency	#	Me	an Frequency					
0	(301.20 Kcn	t/s <cnt s<="" td=""><td>0</td><td></td><td>150 KHz</td></cnt>	0		150 KHz					
Three input formats are supported										
 Enter the duration of the low-period in clock cycles by omitting a unit 										
3 2.) Enter the duration of the low-period in seconds by adding "5" 3.) Enter the frequency by appending "₩2"										
									CTS Details	Optional unit prefixes: n u m
Readout config:	Press enter or leave input do and is completed as soon as	Press enter or leave input do apply values. This might take a few moments 21 and is completed as soon as the left column has changed								
	Ingger Channel Counter		Design compiled	Thu: 15 Nov 2012 20:08:02						
	Idle/Dead Counter		Besign complica	114, 10 101 2012 20:00:02						
	Trigger statistics		TD FSM State	LE						
			RO FSM State	R0_FSM_WAIT_BECOME_IDLE						
TD ECM Limit (debug only):	disabled		RO Queue	Active, words enqueued: 43						
TD F SWEInit (debug only).	disabled		Current Trigger (15:0)	0011 1110 0100 0000, Not asserted						
RO FSM Limit (debug only):	disabled		Buffered Trigger (15:0) 0011 1110 0100 0110, Type: 0x1							

Extendible and modular structure
Master and slave mode operation
Up to 16 independent trigger modules
4 channel TDC for trigger time
8 general purpose trigger inputs

- Coincidence detection
- Periodic & Random pulser
- On-board and off-board trigger distribution
- •Trigger generation from TDC channel inputs

•Tested successfully during the CBM and PANDA test beams with slave and master modes

13482 . 514 3 m

Threshold setting

Central Trigger System 595.24 KHz 1 KH Console based as shell scrip Edges 124.58 Hz 300.30 KHz 25.00 MHz slow control software 0.00 Hz 0.00 Hz _pysics_trig pysics_trigg ovaica tria 149.51 KHz with many features 125.56 Ha 0.00 Hz 0.00 Ha 0.00 Hz 0.00 Hz 0.00 Hz 0.00 H IDLE Trigger processing & control **Unpacking & Online Analysis** & DAQ

- Pre-amplified with commercial amplifiers (MMICs)
- Input LVDS buffers in FPGAs are used as discriminators – Lattice MachXO2
- The leading edge time and Time over Threshold is encoded in the digital pulse
- The thresholds are set by FPGA via PWM and low pass filter
- FEE is placed directly at the detector, only digital signals are sent out
- Time measurements are done by TDCs implemented in FPGA (TRB3)

- Test setup: 500 µV, 6 ns width, analogue signal as input to PCB, amplification x40
- Threshold is set on the reference LVDS input PWM + low-pass with a resolution of <100 µV
- Pulser test: ~23 ps
- Single phototelectron laser test with MCP: ~70ps
- FEE cost (without PCB+connectors) per channel only 0.56€ (16 channel version)
- Tested at the PANDA DIRC and Barrel DIRC beam times in 2012, 2013, 2014

Idea: Modified Wilkinson ADC

- The input signal is integrated with a capacitor
- The capacitor is discharged using a current source → fast crossing of zero
- Measure time necessary to reach zero

- Tested in lab with pulser and in gamma beam in Mainz (MAMI)
- Charge precision in lab: 0.5% (no walk correction)
- Charge precision: as low as 5% (no walk correction)

- Positron Emission Tomography (PET) for molecular imaging
- Approach is RPC (Resistive Plate Chambers) based
- Simulations suggest factor 8 better performance over the best commercial tomography [1][2]
- Animal PET Prototype demonstrated
 0.4 mm image resolution with TRB2 [3]
- Prototype for high resolution animal PET scanner and low sensitivity (for cost reasons) whole body human scanner is under development

[1] A. Blanco et al., Nucl. Instr. and Meth. A602 (2009) 780;
 [2] M. Couceiro et al., 2012 IEEE Nucl. Sci. Symp. Conf. Record (2012) 2651;
 [3] P. Martins et al., 2012 IEEE Nucl. Sci. Symp. Conf. Record (2012) 3760

A-detector a; B-detector b; I-X strips; 2-Y strips; 3-signal division network; 4-high voltage connections. [3]

Hit map in a) detector a, and in b) detector b. The shadowed vertical lines correspond to the 0.35 mm spacers used to define the gap width. [3]

FEE & 65 Channel TDC

- Trigger signal is digitised for reference time (65th channel)
- Data readout through 2GBit/s optical link
- 5x16 cm to be plugged on the back of an MCP-PMT
- Very high density for FEE & 65 channel TDC + DAQ + Power
- Tested during the CBM October 2012 test beam
- The Sync message is processed at the internal TRB3-CTS and distributed to 4 FEEs
- Half detector readout with CBMRICH-FEE, other half with nXYTER

- 64 signals from detector
- Amplification

0

•

- Thresholds
- Input signal discrimination
- Time measurement
 - Data readout

FEE & 65 Channel TDC

- Trigger signal is digitised for reference time (65th channel)
- Data readout through 2GBit/s optical link
- 5x16 cm to be plugged on the back of an MCP-PMT
- Very high density for FEE & 65 channel TDC + DAQ + Power
- Tested during the CBM October 2012 test beam
- The Sync message is processed at the internal TRB3-CTS and distributed to 4 FEEs
- Half detector readout with CBMRICH-FEE, other half with nXYTER

- 64 signals from detector
- Amplification
 - Thresholds
 - Input signal discrimination
- Time measurement
 - Data readout

•

FEE & 65 Channel TDC

- 64 signals from detector
- Amplification
 - Thresholds
 - Input signal discrimination
- Time measurement
 - Data readout

•

- Trigger signal is digitised for reference time (65th channel)
- Data readout through 2GBit/s optical link
- 5x16 cm to be plugged on the back of an MCP-PMT
- Very high density for FEE & 65 channel TDC + DAQ + Power
- Tested during the CBM October 2012 test beam
- The Sync message is processed at the internal TRB3-CTS and distributed to 4 FEEs
- Half detector readout with CBMRICH-FEE, other half with nXYTER