CBM DAQ Overview

Walter F.J. Müller, FAIR, Darmstadt

Joint CBM / Panda DAQ Workshop 19 - 20 February 2015

CBM Detector Requirements

CBM Setup

CBM DAQ Architecture

19 - 20 February 2015

CBM DAQ/Trigger – 4 Key Points

- No hardware trigger
 - All data must be transported
 - Only time available to organize data {fixed target + continuous beam \rightarrow no bunch crossing clock}
- High interaction rates
 - Design point: 10^7 Au+Au int/sec @ 25 A GeV \rightarrow significant radiation levels for FEE
- High raw data volume
 - Scale: 1 TByte/sec
- High channel count; High bandwidth
 - Scale: see next slide

CBM DAQ: Channel and Data density

- STS, MUCH and TRD have a high channel and data density
 - usage of custom ASICs mandatory
 - up to 1 Gbit/sec per ASIC bandwidth in STS
 - STS is most challenging case
 - STS drives architecture choices

Silicon Tracking System

Engineering: stations/cabling/cooling

J-PARC 2014

J. Heuser – CBM Silicon Tracking System

9

Current STS Readout Concept

STS Readout Board (ROB)

1 master GBTx connected to 1 VTRx transceiver

2 slave GBTx connected to 1 VTTx (twin transmitter)

- Slow control, clock distribution
- Data readout

1 SCA as slow control interface from master to slaves

Data readout, control responses

CBM DAQ: Most Data via GBTx

All CBM sub-systems with high data density use GBTx

Detector	#channels	#ASICs	#GBTx
STS	1800k	~15k	~3000
MUCH (SIS-100)	180k	~1.5k	~400
TRD (SIS-100)	290k	~9k	~1400

Others, like ToF, plan to use GBTx too

CBM and FEE Radiation Levels 1

TID and NIEL per 'CBM-Year'

Old Calculations Will be updated soon

Detector	TID	NIEL	Fast Hadrons
	[Gy / yr]	[/cm²/yr]	[n/ (cm² s)]
STS-30cm	1000	3 10 ¹²	100 k
STS-100cm	100	1 1012	20 k
MUCH-1 inner	1000	8 10 ¹³	700 k
MUCH-1 outer	100	5 10 ¹²	30 k
RICH (120cm)	10	3 10 ¹⁰	2 k
TRD-1 inner	200	2 10 ¹²	60 k
TRD-1 outer	2	3 10 ¹⁰	1 k
TOF inner	100	3 1011	50k
TOF outer	2	5 10 ¹⁰	1 k

19 - 20 February 2015

CBM and FEE Radiation Levels 2

- Compared to LHC+ inner tracker modest
 - CBM requires 'radiation tolerant' components
- TID not a key issue
 - For FEE 10 kGy or 1 Mrad
 - Easy to achieve in modern ASIC technologies
- NEIL neither
 - Exceptions: Opto transceivers + MUCH inner edge
- SEU robustness required
 - Limits where FPGAs can be used
 - Typ SEU cross section: 1 10⁻¹⁴ SEU/bit
 - Modern FPGA: ~100 Mbit config
 - 100k flux \rightarrow 1 SEU per 10 sec

Electronics Areas in E10 and E40

19 - 20 February 2015

FAIR T0 Centre as CBM FLES Location

19 - 20 February 2015

Time Slices

- Time is the only way to organize data at DAQ level
- Events {'one interaction'} are defined during reconstruction
- → Time slice building instead of 'event building'
- Requirements for time slice building
 - collect all data of a time slice in one compute node
 - adjacent time slices must have some small overlap {otherwise interactions at the slice boundary can not be reconstructed}

Efficient solution

- define a micro slice, length few µsec
- macro slice is build from micro slices
 {e.g. 100 mirco slices with 1 micro slice overlap}

CBM Readout Chain

19 - 20 February 2015

19 - 20 February 2015

GBTx Based Readout Chain

GBTx in a Nutshell

GBTx provides essentially a 'remote SPI' interface

19 - 20 February 2015

DPB Mission Statement

- Traffic class Mux/Demux
 - Towards FEE: combined clock & sync & control & data
 - Towards backend separate
 - Fast control: clock & sync (e.g. via White Rabbit)
 - Slow control: e.g. via controls Ethernet
 - Data links to FLIB
- Provide generic DAQ and Control Interface
 - Generic data container stream to FLIB/FLES
 - Generic fast/slow controls interface
 - Encapsulate Sub-System specific formats/protocols
- Data Preprocessing
 - Feature extraction (in case of SPADIC)
 - Cluster finding ect.

CBM DAQ: Beyond GBTx

- Some CBM sub-systems have
 - modest data densities
 - Iow particle fluxes at FEE location
- They can and will use FPGA-based FEE
 - RICH
 - PSD (when FEE separated)
 - ECAL (t.b.d.)
- The readout chain for FPGA-based sub-systems must
 - be compatible with common DPB layer
 - be compatible with common TFC (Timing & Fast Control)
 - be compatible with common controls system
- More in "CBM FPGA-based sub-systems" → next talk by Christian Pauly

Thanks for your attention

19 - 20 February 2015

Backup Slides

19 - 20 February 2015

FEB Types and ROB Connectivity

Common CBM ROB Prototype

Alternative approach: common CBM GBT prototype board

- Full GBTx/VL functionality for all readout chains (STS-XYTER, GET4, SPADIC2,..)
- frontend connectivity (GBTx E-Links, SCA) routed to FMC connector

GBTx in a Nutshell 1

GBTx

- provides a bi-directional synchronous bit stream with constant latency between backend and FEE ASIC
- can be operated in several modes
- here only one mode is discussed:
 - uplink and downlink uses GBT frames
 - 10 e-ports with 320 Mbps

GBTx in a Nutshell 2

GBTx

- transports data over optical link in 120 bit frames @ 40 MHz
- in 'transceiver; GBT frame uplink; 10x320' mode:
 - 80 bit payload data
 - 32 bit FEC
 - 8 bit frame header and slow control
- action in each 40 MHz cycle ($f_{LHC} = 40.0786$ MHz)
 - Downlink
 - B0 bit data received from incoming GBT frame
 - □ split 80 \rightarrow 10 x 8 bit
 - serialize out 8 bit on each of 10 e-ports
 - Uplink
 - 8 bit received on each of 10 e-ports
 - merge $10 \times 8 \rightarrow 80$ bit
 - BO bit data send with outgoing GBT fame

Current Status DAQ

- FLES (First Level Event Selector) hardware
 - The LOEWE CSC is considered prototype for FLES
 {768 nodes with 2 x 12 cores plus a GPU; InfiniBand interconnect}
- FLIB (FLES Interface Board)
 - Prototype hardware/firmware available from FIAS, Frankfurt
- DPB (Data Processing Board)
 - Architecture proposal from Warsaw University of Technology
 - µTCA based, many synergies with developments done for White Rabbit switches