

EMMI workshop: QGP Imprints HD, April 16-17, 2015

Itzhak Tserruya

When and where were these two pictures taken?

EMMI workshop: QGP Imprints HD, April 16-17, 2015

Itzhak Tserruya

□ Introduction

"Collective" observables in small systems

- Long range correlations
- > Flow: $v_1, v_2, v_3 ...$

mass ordering, quark scaling...

HBT radii

□ Hard / penetrating probes in small systems

- Energy loss?
- > HF and J/ ψ R_{AB}
- Photons, dileptons?

Summary

How do we quantify small vs large

Size of the colliding system: pp < p,d+A << AuAu or PbPb</p> > initial transverse size > N_{part} > N_{coll} Size of the medium formed: $> dN_{ch}/d\eta$ $> N_{ch}$

Small systems: paradigm change?

- p+p: reference baseline
- p,d+A:
 - System size too small for quark matter formation
 - Reference for cold nuclear matter effects
- Is that so? Many features seen in A+A collisions are also seen in high multiplicity p,d+A collisions:

Short historic regression

The possibility that QGP matter is formed in high multiplicity pp events is not a new idea.

- Fermilab experiment E735 main goal was just that:
- "... to search for evidence of a phase transition of hadronic matter to a deconfined quark-gluon state" in ppbar collisions."
- See also:

Friedlander and Weiner, PRL 43, 15 (1979) and PRL 57, 2119 (1986)

<p_T> vs multiplicity

Small systems: paradigm change?

- p+p: reference baseline
- p,d+A:
 - System size too small for quark matter formation
 - Reference for cold nuclear matter effects
- Is that so? Many features seen in A+A collisions are also seen in high multiplicity p,d+A collisions:
 - Long range near-side correlations

Ridge discovered at RHIC

Ridge = Long-range near-side correlations

PRC 80, 064912 (2009)

Ridge in small systems at LHC

Long-range near-side correlations first seen in high multiplicity p+p collisions and later also in high multiplicity p+Pb collisions at LHC

JHEP 09, 091 (2010)

PLB 718, 795 (2013)

Strength of correlation much smaller in p+p than in p+Pb

Ridge in small systems at RHIC

Two particle correlations measured over a large $|\Delta \eta| > 2.75$ gap

(charged track in central arm and tower hit in forward calorimeter)

□ Long-range near-side correlations in central d+Au collisions in the Au going direction

Not present in minimum bias p+p collisions, in the d-going direction, in peripheral d+Au and

Shape engineering: ³He+Au

Long-range near-side correlations seen in both Augoing and ³He-going directions

Hydro can explain and reproduce the ridge

Initial state gluon saturation without final state interaction can also explain the ridge

Small systems: paradigm change?

p+p: reference baseline

p,d+A:

System size too small for quark matter formation

- Reference for cold nuclear matter effects
- Is that so? Many features seen in A+A collisions are also seen in high multiplicity p,d+A collisions:

Long range near-side correlations

➤ Flow

Flow in small systems: v_n(p_T)

□ Same qualitative features (v_n shapes and harmonic ordering) as in Pb+Pb

□ Similar magnitude within a factor of two

Itzhak Tserruya

QGP Imprints,

Flow in small systems: multiplicity dependence

 $v_2(pPb) < v_2(PbPb)$ Expected

v₃ < v₂ v₃(pPb) ≈ v₃(PbPb)

Similar triangular excentricity in pPb and PbPb

Shape engineering: d,³He+Au

v₂ of ³He+Au similar to that of d+Au
<u>Clear v₃ signal in central ³He+Au</u> collisions

Itzhak Tserruya

Flow in small systems: d,³He+Au

Flow in small systems: mass ordering

PHENIX arXiv:1404.7461

ALICE PLB 726, 164 (2013)

- □ Mass ordering in d+Au v₂ at RHIC
- □ PHENIX data consistent with viscous hydrodynamics (using η /s =1/4 π) at p_T<2 GeV/c
- Mass ordering in p+Pb at LHC, even more pronounced than in Pb+Pb at same multiplicity? Stronger radial flow in p+Pb?

Flow: Quark scaling

Quark scaling works even better than in Pb+Pb

Flow develops at partonic level?

Itzhak Tserruya

2.0

1.5

2.0

1.5

Collectivity in pPb

CMS arXiv:1502.05382

Flow analysis using the cumulant method in multiparticle azimuthal correlations

$$V_{2}{4} \approx V_{2}{6} \approx V_{2}{8} \approx V_{2}{\infty}$$

STAR pp, dAu, AuAu

PRC 79, 034909 (2009)

BW fit quality comparably good in all three systems

Radial flow

ALICE PLB 728, 25 (2014),

Mass ordering seen down to very low multiplicities

Natural explanation: collective radial expansion of the system

Small systems: paradigm change?

- p+p: reference baseline
- p,d+A:
 - System size too small for quark matter formation
 - Reference for cold nuclear matter effects
- Is that so? Many features seen in A+A collisions are also seen in high multiplicity p,d+A collisions:
 - Long range correlations in d,³He+Au
 - ➤ Flow
 - ➤ HBT radii

HBT radii and multiplicity

ALICE PLB 739, 139 (2014)

HBT radii scale with size

 $1/\overline{R} = \sqrt{(1/\sigma_x)^2 + (1/\sigma_y)^2}$

arXiv:1410.2559

PHENIX Au+Au and Cu+Cu: HBT radii scale linearly with initial transverse size

□ ALICE Pb+Pb : same behavior

...also in small systems

arXiv:1404.5291

□ HBT radii scale linearly with the initial transverse size

- Smooth behavior from small (d+Au, p+Pb) to large (Au+Au, Pb+Pb) systems at RHIC and LHC.
- □ Imply or consistent with radial expansion in small systems and fsi

Intermediate summary of experimental facts

Many features seen in A+A collisions are seen in p,d+A collisions and even in p+p collisions at high multiplicity:

- Long range correlations
- > Flow:

 $v_n(p_T)$ – similar shape

- v₂ mass ordering
- v₂ quark scaling
- multiparticle correlations
- strong radial flow
- HBT radii scaling with initial transverse size

Smooth evolution from small to large systems.

Small systems exhibit collective behavior consistent with hydro.

and what about Hard / e.m Probes?

If QGP is formed in small systems we should also see all the characteristic features of the medium:

➢ high p_T suppression / jet quenching
➢ J/ψ suppression
➢ Photons and dileptons

Energy loss / quenching ?

□ No evidence of charged particle suppression in d+Au or in p+Pb
□ Need trigger on much higher multiplicity events
Suppression clearly seen in Au+Au at 40-50% centrality → dN_{ch}/dη≈100

Itzhak Tserruya

HF R_{AA} system-size dependence

PRC 90, 034903 (2014)

Smooth evolution of HF R_{AA} from enhancement in small systems to suppression in large systems

<u>J/ψ system-size dependence</u>

PRL 101, 122301 (2008)

 Similar R_{AA} at similar N_{part} in dAu, CuCu and AuAu systems.

- Similar suppression in Cu+Au (Au-going direction) and Au+Au
- Stronger suppression in Cu+Au (Cu-going direction) opposite of expected trend if suppression is prop to particle density

Photons and Dileptons

 $[({\rm GeV}/c)^{-2}]$

 $\frac{1}{2\pi p_T} \frac{\mathrm{d}^2 N}{\mathrm{d} p_T \mathrm{d} y} \left[\left[\right]$

PRC 81, 034911 (2010)

- Many features seen in A+A collisions are seen in p,d+A collisions and even in p+p collisions at high multiplicity:
 - Iong range correlations
 - ➤ Flow:
 - * $v_n(p_T)$ similar shape
 - v₂ mass ordering
 - v₂ quark scaling
 - multiparticle correlations
 - strong radial flow
 - HBT radii scaling with initial transverse size
- Smooth evolution from small to large systems.
- Small systems exhibit collective behavior consistent with hydro
- No evidence of energy loss or jet quenching in small systems
- Heavy flavor and J/ ψ : smooth evolution from small to large systems.
- Need similar systematic approach on hard probes observables in small systems, triggering on very high multiplicity events.

Happy birthday Johanna !

