Cosmological Inflation

Matthias Bartelmann

Heidelberg University, ZAH, ITA

UNIVERSITÄT

Causality and the need for inflation

Cosmological standard model

- General relativity
- Symmetry assumptions: spatial homogeneity and isotropy
- Only degree of freedom is the scale factor $a(t)$, controlled by Friedman's equations
- Hubble function $H(a):=\dot{a} / a$ sets inverse time scale (Hubble time)
- Comoving Hubble radius, causality:

$$
\frac{c}{a H}<\lambda=\frac{2 \pi}{k}
$$

Solution for causality

Solution for causality

- Comoving Hubble radius needs to shrink for causal contact
- By Friedman's equations, this implies

$$
P<\frac{\rho c^{2}}{3}
$$

- Postulate scalar field φ (inflaton) with Lagrangian

$$
\mathcal{L}=\partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)
$$

- Leads to

$$
\frac{P}{\rho}=\frac{\dot{\varphi}^{2} / 2-V}{\dot{\varphi}^{2} / 2+V}
$$

- Negative pressure possible if $\dot{\varphi}^{2} / 2<V$
- Inflation requires "slow roll": $\dot{\varphi}^{2} \ll V$ for long enough
- Potential slope needs to be small,

$$
\epsilon_{V}:=\frac{M_{\mathrm{Pl}}^{2}}{2 V^{2}}\left(V^{\prime}\right)^{2} \ll 1,
$$

- for sufficiently long time,

$$
\eta_{V}:=\frac{M_{\mathrm{Pl}}^{2}}{V} V^{\prime \prime} \ll 1
$$

- By Friedman's equations, leads to

$$
H^{2} \approx \frac{V}{3 M_{\mathrm{Pl}}}
$$

Structures from Inflation

Structures from Inflation

- Vacuum fluctuations $\delta \varphi$ cause curvature fluctuations,

$$
\mathcal{R}=-H \frac{\delta \varphi}{\varphi}
$$

- At the same time, tensor fluctuations $h_{k}^{+, \times}$are produced
- Power spectra

$$
\begin{aligned}
\mathcal{P}_{\mathcal{R}} & =A_{s}\left(\frac{k}{k_{*}}\right)^{n_{s}-1+\mathrm{d} \ln n_{s} / \mathrm{d} \ln k \ln k+\ldots} \\
\mathcal{P}_{t} & =A_{t}\left(\frac{k}{k_{*}}\right)^{n_{t}+\mathrm{d} \ln n_{t} / \mathrm{d} \ln k \ln k+\ldots}
\end{aligned}
$$

for scalar and for tensor modes can be predicted

Observables

Observables

Multipole moment, ℓ

Observables, slow-roll parameters

- Observables:

$$
A_{s}, A_{t}, n_{s}, n_{t}, \frac{\mathrm{~d} \ln n_{s}}{\mathrm{~d} \ln k}, r:=\frac{\mathcal{P}_{t}}{\mathcal{P}_{\mathcal{R}}}
$$

- They are related to the slow-roll parameters:

$$
\begin{aligned}
A_{s} \approx \frac{V}{24 \pi^{2} M_{\mathrm{Pl}}^{4} \epsilon_{V}}, \quad A_{t} \approx \frac{2 V}{3 \pi^{2} M_{\mathrm{Pl}}^{4}} \\
n_{s} \approx 1-6 \epsilon_{V}+2 \eta_{V}, \quad n_{t} \approx-2 \epsilon_{V} \\
\frac{\mathrm{~d} \ln n_{s}}{\mathrm{~d} \ln k} \approx 16 \epsilon_{V} \eta_{V}-24 \epsilon_{V}^{2}-2 \xi_{V}^{2}, \quad r \approx 16 \epsilon_{V} \approx-8 n_{t}
\end{aligned}
$$

Results by Planck

Results by Planck

Results by Planck

Results by Planck

- Best constrains so far, combining temperature and polarisation information with gravitational lensing:

$$
\begin{aligned}
n_{s} & =0.9677 \pm 0.0060 \quad(68 \%) \\
\frac{\mathrm{d} \ln n_{s}}{\mathrm{~d} \ln k} & =-0.0033 \pm 0.0074 \\
r & <0.11
\end{aligned}
$$

- Slow-roll parameters:

$$
\begin{aligned}
\epsilon_{V} & <0.011 \\
\eta_{V} & =-0.0092_{-0.0127}^{+0.0074} \\
\xi_{V} & =0.0044_{-0.0050}^{+0.0037}
\end{aligned}
$$

Gravitational waves?

[^0]
Gravitational waves?

Gravitational waves?

Gravitational waves?

[^0]:

