Tale of the Tails
Imprints of QCD
Heidelberg, April 2015
L. McLerran and Bjoern Schenke

A story | think will make Johanna happy, at least the ending
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If there were no tails:

Trains would not crash

Cats would not land on their feet

Would photons flow?
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Rates computed fall short in low

pt region

Flow is generically way too small
Only success models to date need
very large rates at late times for

pions

(Bratkovskaya et al, Zahed et. Al.)
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Problems with photon emission:

Rates typically higher than computed from
first principles hydrodynamical
computations
Photon flow observed and too large for first
principles computations
Maybe some hope from late time emission
of boosted pions?
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There is geometric scaling of the p_t spectrum for pp, dAu, A-A at RHIC and LHC

Golec- Biernat, Statso Kwieczinski; Praszalowicz and McLerran
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Also agrees with the multiplicity dependence seen in Phenix
LDM and Christian Klein —Boesing
Suggests an early time explanation before there is breaking of scale invariance



Attempts by Glasma, Semi-QGP:

Both methods suppress the quark production until late time therefore suppressing the
rate of photon production until that late time. Improves but does not solve the photon
flow problem.

Greatly suppresses the overall rates!
Gives about an order of magnitude suppression relative to data

Lattice Monte-Carlo computations of rates are good to within a factor of two and agree
with estimates from hard thermal loop computations

Jets?
Hard to get the rates correct. Jets in general for these smallish pt are not so simple.
In LHC, that saturation momentum is several GeV, so that the jets effective mass is huge.

This allows lowish momentum “jets” and their decay product to scatter in the media. In
effect, the ‘jets’ at several GeV behave like they are part of the media.

So what might be wrong?



For a photon at momentum k, what is the typical temperature it is emitted from?
Shuryak; McLerran, Toimela
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Rate integral peaked at k ~ 4T, which is in the tail of the distribution



What happens for a distribution with a power law tail?

f(k) = (1 + k/aT)"
k‘ < CLT exponential; a~ 6

T is temperature, aT saturation momentum?

Note that as system cools, the center of the distribution stays fixed, but the tail
f~ (aT/k)°

Glasma computations suggest that evolution should be shape conserving

The tail quickly falls, and there is a rapid dependence upon the number of participants
through T. Will lead to geometric scaling.
Maximum of emission rate then

k/T ~4a/(a—4) ~ 12

HUGE factor of time! t ~ T
The over all rate is about a factor of 4 larger than for the thermal case
This example is a bit of an exaggeration but illustrates the main point:
Tails are important and they can STRONGLY modify expectations from
fully thermalized computation



What we did:

Mclerran Schenke

Replace the Bose-Einstein and Fermi Dirac distributions in the rate
formula for photons by Tsallis distributions witha =6

Generalize the emission rate formula
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Insert into a 1+1 D hydro computation to compute the rates
No k factor or tuning of the fits. No contributions from jets or hadron gas

Initial temperature in all plotsis T =.3 GeV
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Shape of Tsallis curve is for an ideal gas. More realistic equations of state will make it a
bit steeper. Also including hadron gas ...



Insert into a 1+1 D hydro computation to compute the rates
No K factor or tuning of the fits. No contributions from jets or hadron gas
Comparison with increased initial temperature for thermal (Tsallis is the same as before)

o ALICE
---  thermal 10fm 7,=0.65 GeV
—  Tsallis 10fm 7(,=0.3 GeV
thermal infinity 7,=0.65 GeV
----- Tsallis infinity 7¢=0.3 GeV




Small changes in the sound velocity squared (10%) make
big difference in photon spectra shape, but not overall
magnitude nor time of emission
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() [fm/c] | th. (I — 300MecV) | th. (Ip — 650MecV) | Tsallis (Ip — 300 MeV)
pr — 1GeV 14 16.6 445
pr — 2GeV 1.4 24 6.9
pr — 3GeV 1 Il 2.9

Emission times were GREATLY lengthened while the overall rate
increase to an acceptable level (Even compared with the very
high early temperature thermal case)

What needs doing:
Microscopic treatment of the tail
Proper 3+1 d hydro
Glasma
Jet contribution
Hadron Gas

Bottom line:

A man who carries a cat by the tail learns something he can learn in no other way
Mark Twain




