

Beam requirements of CBM & HADES

Christian Sturm and Jerzy Pietraszko

Outline

1. Running scenario @ SIS100 - C. Sturm

- A brief introduction
- CBM running scenario
- CBM pre-commissioning phase
- HADES running scenario

2. Beam quality requirements for CBM & HADES @ SIS100 - J. Pietraszko

Exploring the QCD phase diagram

Open questions at high net baryon densities:

- Phase transition from hadronic matter to quarkyonic or partonic matter ?
- Chiral phase transition ? Chiral restoration ?
- In-medium modification of hadrons ?
- Nuclear Equation-of-State at neutron star core densities ?

\rightarrow substantial discovery potential with CBM at FAIR

Field driven by experimental data !

Messengers from the dense fireball

UrQMD transport calculation

Charm, multi-strange (anti)particles, vector mesons (\rightarrow dileptons) are rare probes at FAIR energies !

Perform measurements at unprecedented reaction rates

- 10⁵ 10⁷ Au+Au reactions/sec
 - \rightarrow fast and radiation tolerant detectors
 - \rightarrow free-streaming read-out electronics
 - → high speed data acquisition and high performance computer farm for online event selection

Identification of leptons and hadrons Determination of (displaced) vertices ($\sigma \approx 50 \ \mu$ m) momentum resolution $\delta p / p \cong 1\%$

Central Au+Au at 25 A GeV / UrQMD+GEANT4 160 p, 450 π^+ + π^- , 44 K⁺, 13 K⁻

H4F Detectors & Accelerators, Hamburg, July 2015

C.Sturm, GSI

Anti-hyperon reconstruction

H4F Detectors & Accelerators, Hamburg, July 2015

Di-electron reconstruction

H4F Detectors & Accelerators, Hamburg, July 2015

Di-muon reconstruction

CBM running scenario at SIS100 (preliminary)

Collision system	Projectile (intensity [s ⁻¹])	Observable	CBM configuration of detector subsystems	Request [weeks]
A + A (C, Au) at 4, 6, 8, 11, (14) AGeV	C (10 ⁸), Au (10 ⁷)	HadronsHypernucleiDi-electrons	MVD, STS, TOF, PSD, & RICH, TRD	6
p + A (C, Au) at 4, 6, 8, 11, 14 GeV	p (5x10 ⁸)	HadronsDi-electrons	MVD, STS, TOF, (PSD) & RICH, TRD	6
p + p & p + A (C, Au) at 14, 20, 25, 29 GeV	p (5x10 ⁸)	 Open charm 	MVD, STS, TOF, (PSD) & RICH, TRD	12
A + A (C, Au) at 4, 8, 11, (14) AGeV	C (10 ⁹), Au (10 ⁹)	 Anti-baryons Multistrange (anti-)particles 	STS, TOF, PSD	12
A + A (C, Ca, Au) at 4, 8, 11, (14) AGeV	C (10 ⁹), Ca (10 ⁹), Au (10 ⁹),	 Di-muons (incl. J/ψ) 	STS, TOF & MUCH	12
p + p & p + A (C, Ca, Au) at 14, 20, 25, 29 GeV	p (5x10 ¹⁰)			

preliminary estimations !

Pre-commissioning phase mCBM@SIS18, 2017 – 2021

- high intensity A+A, 1 week per year, main user
- several shifts per year, parasitic user

<u>Commissioning phase – year 1</u> Technical runs for 3 configurations

- 3x 2 weeks, main user
- several shifts per year, parasitic user

Production phase - year 2 - 7

- 1st block, 4 weeks
- break, \geq 8 weeks
- 2nd block, 4 weeks
- break, \geq 8 weeks
- 3rd block, 4 weeks

CBM pre-commissioning phase:

mCBM@SIS18

CBM full system test 2017 - 2021 in high-rate nucleus-nucleus collisions

Fixed set-up at the host lab

Test of final detector configurations

Test and optimization of the

- free streaming data transport to a mFLES or to FLES
- online reconstruction
- offline data analysis

CBM pre-commissioning: *mCBM@SIS18*

H4F Detectors & Accelerators, Hamburg, July 2015

CBM pre-commissioning: mCBM@SIS18

Au+Au collisions, 4 – 11 A GeV

- Yield, p_T spectra and flow excitation functions
 - of identified particles incl. multi-strange hyperons
- Excitation function of event-by-event fluctuations
- (Double-) hypernuclei produced (discovered)
- Heavy strange objects discovered or excluded
- In-medium properties of light vector mesons at different fireball densities and temperatures
- Excitation function of the fireball temperature
- Flow of dileptons as function of p_T and m_{inv}

p+p and p+A collisions, 4 - 29 GeV

Charm production and propagation in hadronic matter

CBM & HADES: Complementary experiments

CBM 3° - 25° Dipole field high rate

HADES 18° - 85° Toroidal field low mass; high res

HADES running scenario at SIS100 (preliminary)

Collision system	Projectile (intensity [s ⁻¹])	Observable	Request [weeks]			
Phase I :						
p + p & p + A (C, Ca, Nb, Au) at 2, 3.5, 6, 8, 11, 14, 20 GeV	p (5x10 ⁶)	Di-electronsStrangeness	12			
A + A (C, Nb, Au) at 1.5, 2, 3, 4, 6 AGeV	C (5x10 ⁶), Nb (2x10 ⁶), Au (10 ⁶)	Di-electronsStrangeness	12			
Beam request: 1x 4 week block per year						
Phase II :						

π + p & π + A (C, Nb, Au)	N (10 ¹¹) at 14 AGeV	Di-electronsStrangeness	16
Pion beam campaign: taking full	preliminary estimations !		

Handover to Jerzy Pietraszko :

Beam quality requirements for CBM and HADES @ SIS100

Backup

H4F Detectors & Accelerators, Hamburg, July 2015

The CBM physics program

Physics case

- Nuclear matter equation-of-state at high net-baryon densities
- Strangeness in nuclear matter and (multi-) strange objects
- Search for quarkyonic matter or for phase coexistence
- In-medium modifications of hadrons
- Exploring chiral symmetry restoration
- Charm production and propagation in cold nuclear matter and in dense QCD matter

Observables

- Strangeness
- Dileptons
- Collective flow, correlations, fluctuations
- Charm
- Hypernuclei

Experiments exploring dense QCD matter Rate capabilities

Experimental challenges

rare probes \rightarrow extremely high interaction rates required !

C.Sturm, GSI

Particle identification

