Requirements of

H4F Workshop Accelerators & Experiments, July 29, 2014 Lars Schmitt, FAIR Darmstadt

- Antiprotons at FAIR
- PANDA Physics
- System Requirements
- Summary

Antiprotons at FAIR

Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA at < 2x10³² cm⁻²s⁻¹

Modularised Start Version

- RESR is postponed (Mod. 4)
 Accumulation in HESR
- 10x lower luminosity: 10³¹ cm⁻²s⁻¹

L. Schmitt, PANDA Requirements

High Energy Storage Ring

HESR Parameters

- Storage ring for internal target
- Initially also_used for accumulation
- Injection of p at 3.7 GeV/c
- Slow synchrotron (1.5-15 GeV/c)
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹

Mode	High luminosity (HL)	High resolution (HR)
Δp/p	~10-4	~4x10⁻⁵
L (cm ⁻² s ⁻¹)	2x10 ³²	2x10 ³¹
Stored p	10 ¹¹	10 ¹⁰

- Stochastic & electron cooling
- Resolution ~50 keV
- Tune E_{CM} to probe resonance
- Get precise m and Γ

L. Schmitt, PANDA Requirements

Requirements Commissioning and MSV

PANDA Experiment requirements												
Beam Parameters	High Lumir	nosity Mode	High Reso	lution Mode								
	Commissioning	Operation in MSV	Commissioning	Operation in MSV								
Time structure		Debunched	l, 20% gap									
Momentum range [GeV/c]	1.5-15 1.5-8.9											
Accumulation time Is necessary only for the MSV. [s]		100	00									
Number of particles after accumulation	10 ⁹	10 ¹⁰	10 ⁹	10 ¹⁰								
Reference energy [GeV]	14	14.1 8.0										
Energy range [GeV]	0.83	-14.1	0.83	3-8.0								
Transverse emittance (rms) [mm rad]		1x	1									
Peak Luminosity [cm-2s-1]	2x10 ³⁰	2x10 ³¹	2x10 ³⁰	2x10 ³¹								
Momentum spread (rms)	1	0-4	≤4;	x10-⁵								
Beam spot radius (rms) [mm] at PANDA target		0.5(h) x	: 0.5(v)									

L. Schmitt, PANDA Requirements

Requirements FAIR Phase A

	PANDA Experiment requ	irements	
Beam Parameters	High Luminosity Mode	High Resolution Mode	
Time structure	Debunche	ed, 20% gap	
Momentum range [GeV/c]	1.5-15	1.5-8.9	
Number of particles after accumulation	10 ¹¹	10 ¹⁰	
Reference energy [GeV]	14.1	8.0	
Energy range [GeV]	0.83-14.1	0.83-8.0	
Transverse emittance (rms) [mm rad]	1	lx1	
Peak Luminosity [cm-₂s-1]	2x10 ³²	2x10 ³¹	ş
Momentum spread (rms)	10-4	≤4x10 ⁻⁵	
Beam spot radius (rms) [mm] at PANDA target	0.5(h)	x 0.5(v)	

PANDA Physics Planning

L. Schmitt, PANDA Requirements H4F Workshop ACC-EXP, July 29th, 2015

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons→ Understand new XYZ states, D_s(2317) and others

Strange hadrons: hyperon polarisation, spectroscopy **Exotic QCD States**: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons:**

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons→ Understand new XYZ states, D_s(2317) and others

Strange hadrons: hyperon polarisation, spectroscopy **Exotic QCD States**: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons:**

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure Time-like Nucleon Formfactors

Measurable in annihilation, discrepancy with space-like
 Generalized Parton Distributions
 Drell-Yan Process

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons→ Understand new XYZ states, D_s(2317) and others

Strange hadrons: hyperon polarisation, spectroscopy **Exotic QCD States**: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons:**

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure

Time-like Nucleon Formfactors

Measurable in annihilation, discrepancy with space-like Generalized Parton Distributions Drell-Yan Process

Nuclear Physics *Hypernuclei:* Production of double Λ-hypernuclei → γ-spectroscopy of hypernuclei, YY interaction *Hadrons in Nuclear Medium*

S(1500)

Potential PANDA Run-Plan: Year 1

Part of machine development approx. 7 days @ J/ ψ & ψ (2S) peaks

calibration/commissioning

30 days @ 1.64 GeV/c

- time-like form-factors
- · light meson spectroscopy and $\Lambda\overline{\Lambda}$ physics

40 days @ 15 GeV/c

- survey of light and heavy exotics at max momentum (hybrids, tetraquarks)
- generic open charm production >10 σ (yields and angular distributions)

14 days @ 12 GeV/c

- · $\Omega\overline{\Omega}$ and $\Lambda_c\overline{\Lambda}_c$ production and dynamics, excited Ω s
- · generic open and hidden charm production

25 days pA @ 2 GeV/c

 \overline{p} and $\overline{\Lambda}$ -potentials incl. calibration (N, Ne, Ar targets)

10 days pd @ 8 GeV/c

 $\Delta\Delta$ content of the deuteron and feasibility studies of pd for spectroscopy (d-target)

13 days @ 5.55 GeV/c

- χ_{c1} angular distribution
- · excited Ξ s

7 days @ 3.75 GeV/c

· Investigate Y(2175) and ΦΦ resonances, T/PS-glueball search

139 days based on 10³¹cm²s⁻¹

Potential PANDA Run-Plan: Year 2

14 days @ 3 GeV/c144 days based on7 days @ 3 GeV/c1031 cm2 s^-1• excited Λ s1031 cm2 s^-17 days @ 4.4 GeV/c1031 cm2 s^-1• $\Xi \equiv$ production and dynamics16 days @ 5.73 GeV/c• χ_{c2} angular distribution80 days @ 6.99++ GeV/c• $\chi(3872)$ width scan10 days @ 6.99++ GeV/c

Other options depending on PANDA results and the development of the field until start of operation:

60 days - 5.61 GeV/c

• h_c width

30-80 days on various momenta

detailed scans of potentially interesting signals

Potential PANDA Run-Plan: first 2 years

PANDA Spectrometer

L. Schmitt, PANDA Requirements H4F Workshop ACC-EXP, July 29th, 2015

PANDA Construction Schedule

Subsystem			20	15			20	6			20	17			20	18			20	19			20	20
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Dipole							0	M7/8																
Forward TOF						M4/7																		
Forward Shashlyk Calorimeter							M7/8																	
Forward Range System						0																		
Luminosity Detector																								
Supports																								
Supplies																								
Controls									0															
Computing																								
DAQ					0					0														
Solenoid					O Con	ductor p	oductio	n <mark>O</mark> Cor	ductor	product	on <mark>O</mark> C	onducto	M8/9											
Cluster Jet Target				0																				
TS Barrel Muon Detectors						0																	\square	
TS Endcap Muon Detectors						0																		
Muon Filter						0																		
Forward Tracking							M4/7																	
Barrel EMC						0	Crystal	produc	ion															
Pellet Target									0		M8/10													
Barrel DIRC							M3/7/8																	
Barrel Time of Flight (TOF)										0														
Interaction Region																								
Micro Vertex Detector (MVD)									M4/8															
Straw Tube Tracker (STT)		0																						
Backward Endcap EMC	M3/7	0																						
Planar GEM Trackers										0														
Forward Endcap EMC	M3/8							M9/10																
Endcap Disc DIRC				0										0										
Hypernuclei Primary Target									0															
Hypernuclei Germanium Detector									0															
Hypernuclei Secondary Active Target												0												
Silicon Lambda Disks																								
Forward RICH																								

R&D, M3: TDR approved

Tendering, Contract Preparation, M4: Contracts signed

Construction design, M7: Planning completed

Prototype/Pre-series construction, M8: Prototype/Pre-series testing complete, production readiness

Component construction & testing, Module assembly & testing, M9: Acceptance test completed

Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, M10: Ready for installation

Funding Milestone

Subject to change due to funding

PANDA Installation Schedule

Subsystem		20	XX		20XX+1					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
Dipole										
Forward TOF										
Forward Shashlyk Calorimeter										
Forward Range System										
Luminosity Detector										
Supports										
Supplies										
Controls										
Computing										
DAQ										
Solenoid										
Cluster Jet Target										
TS Barrel Muon Detectors										
TS Endcap Muon Detectors	T									
Muon Filter										
Forward Tracking										
Barrel EMC										
Pellet Target										
Barrel DIRC										
Barrel Time of Flight (TOF)										
Interaction Region										
Micro Vertex Detector (MVD)										
Straw Tube Tracker (STT)										
Backward Endcap EMC										
Planar GEM Trackers										
Forward Endcap EMC										
Endcap Disc DIRC										
Hypernuclei Primary Target										
Hypernuclei Germanium Detector										
Hypernuclei Secondary Active Target										
Silicon Lambda Disks										
Forward RICH										

Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, **M10**: Approval for installation Installation at FAIR, commissioning without beam, **M11**: Ready for beam Commissioning with beam, **M12**: Ready for operations Magnet field mapping

Assumptions:

- CC delayed
- Start of installation once hall available
- Dipole first: HESR
- TS and FS separate
- FS: from upstream towards downstream
- TS sequence:
 - Solenoid
 - Barrel EMC
 - Inner systems
 - Endcap

Systems with Requirements

L. Schmitt, PANDA Requirements H4F Workshop ACC-EXP, July 29th, 2015

L. Schmitt, PANDA Requirements H4F Workshop ACC-EXP, July 29th, 2015

PANDA Target

Luminosity Considerations

- Goal: 2x10³² cm⁻²s⁻¹ (HL mode)
- With 10¹¹ stored p and 50 mb: 4x10¹⁵ cm⁻² target density

Cluster Jet Target

- Continuous development
 - Nozzle improvement
 - Better alignment by tilt device
 - Record 2x10¹⁵ cm⁻² reached
- TDR approved

Pellet Target

- >4x10¹⁵ cm⁻² feasible
- Prototype under way
- Pellet tracking prototype
- Second TDR part 2015/16

Latest version of the cluster jet target

L. Schmitt, PANDA Requirements H4F Workshop ACC-EXP, July 29th, 2015

PANDA Vacuum

L. Schmitt, PANDA Requirements

Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Outer layers: double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

Challenges

- Low mass supports
- Cooling in a small volume
- Radiation tolerance

- Detector closest to IP
- HESR commissioning without MVD
- HESR ion operation without MVD

Luminosity Detector

Elastic scattering:

- Coulomb part calculable
- Scattering of p at low t
- Precision tracking of scattered p
- Acceptance 3-8 mrad

Detector layout:

- Roman pot system at z=11 m
- Silicon pixel detector:
 - 4 layers of HV MAPS (50 µm thick)
 - pixels 80x80 µm²
- CVD diamond supports (200 μm)
- Retractable half planes in secondary vacuum

Hypernuclear Setup

Principle:

• Produce hypernuclei from captured Ξ

Modified Setup:

- Primary retractable wire/foil target
- Secondary active target to capture Ξ and track products with Si strips
- HP Ge detector for γ-spectroscopy

Primary Target:

- Diamond wire
- Piezo motored wire holder

Active Secondary Target:

L. Schmitt, PANDA Requirements

PANDA Data Acquisition

L. Schmitt, PANDA Requirements

Luminosity requirements

- 10³⁰ cm⁻²s⁻¹ for commissioning
- 10^9 stored \overline{p}
- 10³¹ cm⁻²s⁻¹ for physics in MSV
- 10¹⁰ stored p
- 10³² cm⁻²s⁻¹ for physics in full Phase A
- 10¹¹ stored p

Setup constraints

- Cluster jet target with high impact on vacuum
- Other targets: hypernuclear wire target, pellet target
- MVD closest to IP: damage by badly tuned beam or beam loss
- PANDA detectors roll out for maintenance and ion operation
- Luminosity detector in roman pot, 3-8 mrad acceptance
- 20% gap for barrier bucket used for data bunching

