

High Energy Reaction and Spectrometer Experiments

H. Simon

Experiment locations

The Super-FRS Experiments physics topics

- Rare isotope search experiments (Pietri, Jokinen, Plaß et al.)
- Atomic collision experiments (Purushothaman, Geissel et al.)
- Mesonic atoms and in-medium effects (Itahashi, Weick et al.)
- Exotic hypernuclei and their properties (Saito, Nociforo et al.)
- Exploration of tensor force (Ong, Terashima, Toki, et al.)
- Delta resonances probing nuclear structure (Benlliure, Lenske et al.)
- Nuclear radii and momentum distributions (Kanungo, Prochazka et al.)
- Exotic radioactivity modes (Fomichev, Pfützner, Mukha et al.)
- Low-q experiments with Active Target (Egelhof et al.)
- Low energy reactions (Heinz, Winfield et al.)

Ideas currently being worked out Selected examples with specific requirements will be shown ...

Nucleon resonances in asymmetric nuclear matter

José Benlliure

- ✓ In-medium baryon resonances.
- ✓ Role of nucleon excitations in compact and massive neutron stars.
- ✓ Constraining the symmetry energy $\sigma(n,p)/\sigma(pn)$
- ✓ The puzzling nature of the Roper resonance.

→ medium to heavy beams 1.2 - 2 A GeV ~10⁸/s

Nucleon resonances in asymmetric nuclear matter

José Benlliure

First pilot experiment at the FRS (2011).

 \checkmark The in-medium excitation of baryon resonances in isobaric charge-exchange reactions was proved.

 \checkmark These inclusive measurements provide limited information of the properties of the excited resonances.

Proposal for a new experiment at the FRS (2018).

✓ Exclusive measurements measuring in coincidence the pion emission will allow a complete characterization of the baryon resonances.

✓ Such an experiment could be performed with the same experimental setup proposed for the investigation of hyper-nuclei.

A dedicated experimental program at the SuperFRS.

✓ Final experiments taking advantage of the full capabilities of FAIR and the SuperFRS to investigate the excitation of baryon resonances in very exotic systems (medium to heavy)

→ medium to heavy beams 1.2 - 2 A GeV ~10⁸/s

Hypernuclei @ FRS

T. Saito

- Hypernuclear spectroscopy with peripheral collisions of heavy ion beams
 - Possible only at GSI (Ebeam > 1.6 A GeV, e.g. ⁶Li, ⁹C,... mainly light, ~10⁶/s)
 - c.f. Relativistic heavy ion collisions at RHIC and LHC: only up to 3-body hypernuclei

 π measurements mid focus of the (main) separator

Reactions with Relativistic Radioactive Beams - A versatile and flexible setup

Schedule and first experiments

1

202x+1 \rightarrow Commissioning and first experiments at Super-FRS (phase 1)

Experiments will make use of uniqueness of R³B:

- Reactions at high beam energies up to 1 GeV/nucleon
- Tracking and identification capability even for the heaviest ions
- Multi-neutron tracking capability, high-efficiency calorimeter

Experiments possible for the first time:

- 4 neutron decays beyond the drip-line and for heavier n-rich isotopes (still light)
- Kinematically complete measurements of quasi-free nucleon knockout reactions
- Electric dipole and quadrupole response of Sn nuclei beyond N=82,
 - and of neutron-rich Pb isotopes & N=126 (polarizability, symm. E)
- fission barriers from (p,2p) reactions (\rightarrow r-process) (heavy)

Physics with R3B setup:

2 3

0

(b)

4

ω [MeV]

5

6

7

•

e.g. Dipole strength Distributions in heavy neutron-rich nuclei

core vs. neutron skins & halos \rightarrow density / asymmetry

AV4' — (b) MN ----MTI-III ······ Δ 3.5 MTI-III 3 high energy ~1 A GeV 2 ე(თ) [mb] თ (დ) [mb] Aumann [15,16] . 2.5 ⁶He 2 2 1.5 ⁶He 1 @ 240 A MeV 0.5 0

S. Bacca et al. PRL **89** (2002) 052502 PRC **69** (2004) 057001

 \rightarrow (light beam, high energy)

access to EoS (e.g. neutron star) & low lying E1 (r-process) → (heavy beam, high energy)

20

0

40

ω [MeV]

60

80

100

Continous Beam ID is integral part of experiments Eg.: ¹³²Sn PDR studies @ FRS/ALADIN-LAND

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Intended Tracking capabilities @ Super-FRS

C. Nociforo

- Detectors for
 - beam diagnostics & particle identification
 - fast & slow extracted beams
- Resolutions required
 - Position $\sigma_{x,y} \sim 1 \text{ mm}$
 - Timing $\sigma_t \sim 50 \text{ ps}$
 - Energy loss $\sigma_{\Delta E} \sim 0.2-1\%$
- Major challenges
 - Radiation hardness (diagnostics on target & machine safety)
 - Particle rates 1/day ...10⁹/s (main-separator)
 - Typ. 1-10 MHz
 - Dynamic range H...U, 100...1500 A MeV
- Tracking is optimized vs. optical resolution

Rate limitations / Spill structure (online monitoring can be provided) H.T. Johansson /NUSTAR EDAQ WG • Different classes of (hard) limitations Dose limits ➔ radiation hard design • Detector limits charge collection → segmentation & opt. spill structure & continous readout in frontends & selecting a region of interest \rightarrow only short (~1..10us) structures harm Optimum Performance only with truely random spill structure !

Summary

- Intense Primary beams (~100 MeV/u maximum energy) are needed from light ions to uranium (with preference for optimization toward heavy beams)
 - optimized production scenarios can be provided
 - & proton beams with intensities only ~10^{9..10}/s e.g. for η' mesic nuclei search
- Parallel Operation will be of importance (typical running times of one week, with parasitic startup commissioning of experiments)
- Machine Protection concept for experiments is highly desireable For mixed beams, focussing capabilities gated by selected isotopes in the secondary beam are required (→ feedback of "experimental" data into controls framework)
- Slow extraction (~1-10s) with a momentum spread +-5 10⁻⁴ (for high res spectroscopy) is desired. For highly collimated experiments, e.g. atomic collisions @ Super-FRS the extraction angle variation should be limited
- All resulting beam parameters & geometry will be later discussed by Helmut Weick:
- Time structure of the extracted beam directly affects the performance of the experiments.
 - Microstructures on a time scale ~>10us might be tolerated
 - Microstructures below ~10us cause real pileup in detectors and electronic chain and severely reduces the amount of usable beam.

Poisson vs. Rate artefacts

NUSTAR: The ,Experiment' comprises several facilities

Super-FRS	RIB production and identification
DESPEC	γ -, β -, α -, p-, n-decay spectroscopy
HISPEC	in-beam γ spectroscopy at low/intermediate energy
ILIMA	masses and lifetimes of nuclei in ground and isomeric states
LASPEC	Laser spectroscopy
MATS	in-trap mass measurements and decay studies
R ³ B	kinematically complete reactions at high beam energy
ELISE	elastic, inelastic, and quasi-free e-A scattering
EXL	light-ion scattering reactions in inverse kinematics
Super-FRS physics	high-resolution spectrometer experiment
Superheavy elements	synthesis, nuclear structure, atomic physics, chemistry experiments with elements $Z \ge 104$

The Approach

Complementary measurements leading to consistent answers

Background in Inclusive Measurement at GSI

RIKEN Nishina Center, Kenta Itahashi

Exclusive measurements, proton beam & pion detection

Reactions with **R**elativistic **R**adioactive Beams **R**³**B**

Reactions with Relativistic Radioactive Beams

GSİ

- A versatile and flexible setup

GLAD @ Cave-C

R3B Si Tracker

Target Recoil Detection

→ Clear signature for (p,2p) reactions

Novel Neutron Detector: NeuLAND

30 double planes 2 x 50 paddles each 5 x 5 x 250 cm³ RP408 / R8619ASSY **FPGA TDC readout**

Incredients for the ⁷H case

Beam Diagnostics

C. Nociforo, RBEE, RBDL

- Full isotope identification (x, y, x', y', DE and TOF)
- Operation modes: fast- and slow-extracted beams
- Special devices (slits, degrader, secondary target, ...)
- Controls \rightarrow machine safety
- DAQ (in-kind GSI / Sweden)
- Various detector systems
 - ➢ GEM-TPC (Finnish in-kind) Test @ GSI 10/2014
 - SEM-GRID & ladder system (Finnish in-kind) "
 - Silicon detectors (EoI Russia) Test @ GSI 08/2014
 - Diamond detectors (EoI Finland)
 - ➤ MUSIC detectors (EoI Finland) Test @ GSI 10/2014
- Various test beam-times at FRS/Cave C

Si detectors for Super-FRS TOF diagnostics

V. Eremin, RBDL

•Two beam tests at GSI in 2012 with ²³⁸U@370 MeV/u and ¹⁹⁷Au@750 MeV/u •Beam test in JINR in 2014, Dubna with ⁴⁰Ar@40 MeV/u •Beam test at GSI in August 2014 with ¹⁹⁷Au@1 GeV/u

- •Full-size strip detectors tested
- •Low and high intensity irradiation
- •Heavy irradiation with a dose equivalent up to 1-2
- years of Super-FRS operation
 - •Functionality is confirmed
 - •TOF resolution up to 13 ps (σ), required 50 ps

Potential In-Kind contribution of PTI, St. Petersburg, Russia

R³B: Time-of-flight detector prototyping

M. Heil, RBEE

Performance goals:

- Time resolution $\sigma_t/t = 2E-4$ ($\Leftrightarrow \sigma_t = 20$ ps for 20 m flight path at 1 AGeV)
- Energy resolution $\sigma_E/E = 1\%$
- High-counting rate capabilities (~1 MHz)
- Large dynamic range (up to Pb-U).
- **FPGA based TDC** readout (△E via ToT Techniques)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Areal view of the combined facility

Large-acceptance superconducting dipole magnet GLAD

Magnet parameters:

- Large vertical gap ± 80 mrad
- High integrated field of 4.8 Tm
- Fringe field at the target position less than 20 mT
- Operational temperature 4.6 K
- The overall size of the conical cryostat: 3.5 m long, 3.8 m high and 7 m wide.

Challenging Magnet design:

- Collaboration CEA Saclay/GSI
- Tilted coils, ironless design
- Correction Coils
- Lightweight design
- Indirect coil cooling
- Thermosyphon cryo distribution

Test Setup@Cave-C – Next steps

- Experiment campaign 2014
- Preparations for GLAD installation
- Full integration test and potential later runs in Cave-C
- Move fully commissioned systems to FAIR high energy Cave

Definition of NUSTAR experiment phases

- Phase 0 (2018-)
 - R&D and experiments to be carried out with present facilities <u>and</u> FAIR/NUSTAR equipment
- Phase 1 (2022)
 - Core detectors and subsystems completed
 - First measurements with FAIR/Super-FRS beams
 - Carry out experiments with highest visibility as part of the core program and within the FAIR MSV
- Phase 2
 - FAIR evolving towards full power
 - Completion of experiments within MSV
 - Essentially the full program of MSV can be performed
- Phase 3
 - Moderate projects, which have been initiated on the way (outside MSV) can be included (e.g. experiments related to return line for rings)
- Phase 4
 - Major new investments and upgrades for all experiments

Superconducting FRagment Separator

High Resolution Spectrometer - recent example

Problems at higher energies (intensities) and with heavier nuclei

GSI Helmholtzzentrum für Schwerionenforschung GmbH