





# SIS100:

#### Main Parameters – a versatile machine

- Circumference: 1083.6 m - (5 x length of SIS18)
- Superperiodicity: 6
- Cells per period: 14
- Focusing structure: Doublet
- 108 Dipoles (superferric)
  - 1.9 T, 4 T/s
  - Nominal current: 13.1 kA
- 168 Quadrupoles (superferric)
  - 27.8 T/m
  - Nominal current: 10.5 kA
- Extraction modes:

HELMHOLTZ

- Fast, 1...8 bunches
- Slow, KO-Extraction up to 10 s
- Acceleration for every ion from protons to uranium (and beyond?)
  - Variable quadrupole powering for  $\gamma_{tr}$  shifting or  $\gamma_{tr}$ -jump

| Item                                         | RIB<br>(U <sup>28+</sup> ) | CBM (U <sup>92+</sup> ) | Protons for<br>pbar         |
|----------------------------------------------|----------------------------|-------------------------|-----------------------------|
| Magnetic rigidity $B \cdot \rho$ [Tm]        | 18 100                     | 14.3 100                | 16.2 100                    |
| Repetition rate $f_{rep}$ [Hz]               | 0.45                       | 0.1                     | 0.36                        |
| Energy range E [GeV/u]                       | 0.2 <b>2.7</b>             | 1.0 <b>10.6</b>         | 4.0 <b>28.8</b>             |
| Relativistic $\gamma$                        | 1.2 3.9                    | 2.0 12.4                | 5.3 31.9                    |
| Transition energy $\gamma_{tr}$              | 15.5                       | 14.3                    | 18.3 (45*)                  |
| Tune $v_{x,y}$                               | 18.9/18.8                  | 17.3/17.8               | 10.4/10.3 /<br>(21.8/17.7*) |
| Number of ions per cycle N                   | 5 x 10 <sup>11</sup>       | 1.5 x 10 <sup>10</sup>  | 2 x 10 <sup>13</sup>        |
| Number of ions per second [1/s]              | 2.25 x<br>10 <sup>11</sup> | 1.5 x 10 <sup>9</sup>   | 7.2 x 10 <sup>12</sup>      |
| Number of bunches $n$                        | 8                          | 2                       | 4                           |
| Harmonics number h                           | 10                         | 10                      | 10 → 5                      |
| RF frequency <i>f</i> [MHz]                  | 1.562.6<br>7               | 2.412.76                | 1.36 1.38                   |
| Extracted bunch form                         | 8                          | "DC"                    | 1 (70 ns)                   |
| Stored beam energy $E_{beam}$ [kJ]           | 51.5                       | 6.1                     | 93.0                        |
| Emittance @ inj. $\epsilon_{x,y}$ [mm mrad]  | 35 x 12                    | 15 x 5                  | 12 x 5                      |
| Emittance @ extr. $\epsilon_{x,y}$ [mm mrad] | 6.3 x 0.9                  | 2.2 x 0.5               | 2.0 x 0.7                   |



#### SIS100: Lattice design criterias

- 1. Length: 5 x SIS18 length (= 1 083.6 m)
- 2. Reference ion operation:  $U^{28+}$ 
  - Localize beam ionization losses
  - Control vacuum pressure
- 3. Secondary ion: Protons
  - Variable  $\gamma_t$ -optics by multiple quadrupole families
  - Fixed  $\gamma_t$ -optics utilizing fast  $\gamma_t$ -jump quadrupoles

#### 4. RF system

ELMHOLTZ GEMEINSCHAFT

- Room temperature cavities, dispersion free straight sections
- State-of-the-art bunch manipulations: Bunch merging & compression, Barrier buckets
- 5. Versatile extraction modes
  - Fast bipolar Kicker system (internal emergency dump)
  - Slow extraction: KO-excited beam, resonant extraction



\_\_\_ F(\|R- G S ╨-

#### SIS100: Lattice design

- **Doublet focusing structure**: up to 100% collimation efficience reachable with focusing order DF
  - First called "storage mode lattice" because many U<sup>29+</sup> particles survived one complete turn.
  - **Dipoles act as a charge state separator** when bending angle per cell is chosen correctly.
  - Quadrupoles are stronger than obviously necessary (over-focussing) to assure survival of beam until it reaches the collimator (which gives other problems → protons).
- U<sup>29+</sup> loss positions are nicely peaked at the position of the collimators
- Dynamic vacuum calculations showed that in spite of the very well controlled losses, a huge pumping speed will be required
  - Cold vacuum chambers
  - SC magnets

ELMHOLTZ

GEMEINSCHAFT







#### Risk assessment

- What to protect?
  - 1. Lives (people)!
  - 2. Health (people)!
    - e.g. losing the thumb ≅ losing one eye → partial disability
  - 3. Environment
    - Radiation, chemicals,
    - EMC (Electromagnetic Compatibility, not E=mc<sup>2</sup>)
    - Noises
    - ...
  - 4. Machine
    - Damage of expensive equipment (> 100,000,000 € !)
    - Long-running replacement times / repair times
      - Damage
      - Activation ("1 W/m" => 1 mSv/h after 4 h @ 40 cm after 100 days of operation)
      - Availability
- Legal necessity
  - §§ 5, 6 Arbeitsschutzgesetz, § 3 Betriebssicherheitsverordnung
  - § 6 Gefahrstoffverordnung, §§ 89, 90 Betriebsverfassungsgesetz
- What remains?
  - Residual risks (for radiation protection: ALARA = As Low As Reasonable Achievable)

HELMHOLTZ

This talk





#### Machine protection

- In the past (and present operation of SIS18), devices protect only themselves
  - Caused e.g. by media supply, short circuit, ...
  - Usually instantly power down and
  - generation of an interlock.
- When a device powers down, the result for the machine could be bad
  - Magnets can quench (by beam energy deposition, insufficient cooling, ...),
  - Sensible equipment could be damaged by beam heating
  - S-FMEA (System Failure Modes and Effect Analysis) has to be done.
- Foreseen to protect the machine:
  - Collimation systems (passive protection)
  - Equipment monitoring and beam monitoring
  - Quench detection and protection (QD/QP)
  - Interlock systems

EL MHOLTZ

**GEMEINSCHAF1** 

Emergency kicker + dump

- 1. Avoid that a specific failure can happen
- 2. Detect failure at hardware level and stop beam operation
- 3. Detect initial consequences of failure with beam instrumentation

#### How to stop beam operation:

- 1. Inhibit injection
- 2. Extract beam into emergency beam dump or
- 3. Stop beam by beam absorber / collimator



F(AIR-GSŤ

#### Is activation an issue?

#### Yes!

- Components have to be human maintainable, so • See talk of I. Strasik! (uncontrolled!) activation has to be limited.
- Hands-on-maintenance: • Dose rate < 1 mSv/hat a distance of 40 cm after 100 days of operation and 4 hours of downtime.
- Standard assumption for protons: Uncontrolled ٠ losses have to be < 1 W/m→ 5...10% protons at 4...28.8 GeV/u
- For heavy ions: < 5 W/m•

HELMHOLTZ

GEMEINSCHAFT

- → 20% U<sup>28+</sup> at 200 MeV/u
- → 10% U<sup>28+</sup> at 2.7 GeV/u
- Already larger than dynamic vacuum effects allow.
- Controlled losses: Extraction sector S5 is already ٠ prepared; components have to be remote / fast serviceable (Magnetic + Electrostatic septa, radiation resistant quadrupoles).
- Halo collimators, Cryo catchers would be more • activated.
- Building design has got separate beam and supply ٠ areas. The latter would be accessible without any activation problems.



# Beam impact on accelerator components

- SIS100 stored beam energy
  - Ions: 3.7 ... 51.5 kJ
    - 11.2 g TNT / 1.5 ml Kerosine (a few drops)
  - Protons: 12.9 ... **93.0 kJ** 
    - 20.2 g TNT / 2.7 ml Kerosine (half a tea spoon)
- Melting/sublimation of acc. components (stainless steel):
  - SPS event with 450 GeV beam: Vacuum chamber burnt through with 2 MJ beam
  - Experimental damage limit for protons ~52 kJ/mm<sup>2</sup>
     SIS100: with protons: ~1 kJ/mm<sup>2</sup>
     PS: ~1 kJ/mm<sup>2</sup>
  - Bragg peak has to be considered
  - Temperature should not be an issue (details on the next pages)
- Quench limit of SC cable (Cu/NbTi)
  - Nuclotron cable: ~1.6 mJ/g [1]
  - Quench recovery time:

ELMHOLTZ

GEMEINSCHAFT

- 10 min at the Serial Test Facility,
- $\sim$ 1 h in the SIS100

[1]: Some Aspects of Cable Design for Fast Cycling Superconducting Synchrotron Magnetism Khodzhibagiyan, Kovalenko, Fischer, IEEE TOAS Vol. 14, No 2, 2004



Courtesy of R. Schmidt / CERN





## Is melting an issue? (I)

- SIS18 beam onto FRS target
  - Cu, Al und C Targets, 1 mm thick.
  - Graphite -> no problems.
- Strong focused  $\sigma_x$ =0.44 mm  $\sigma_y$  = 0.99 mm, 125 MeV/u, 7x10<sup>9</sup>...1x10<sup>10</sup> U<sup>28+</sup>/ Spill.
- Sometimes, up to 100 shots were necessary to drill a hole.
- Average power was only ~1 W, but peak energy ~3 kJ/g.
- Process: target melts spontaneous but hardens again before next shot (only radiation cooling).





H. Weick





## Is melting an issue? (II)

- Take damage limit for protons onto steel (52 kJ/mm<sup>2</sup> ~ 1 kJ/g)
  - Protons: max. 93 kJ beam energy, beam spot size r=0.75 mm
  - Ions: max. 51.5 kJ beam energy, beam spot size r=0.56 mm → ignored dE/dx!
- One should think those spot sizes can not be achieved at maximum energy by optics of the machine:
  - $r_{avg}$ =3.8 mm (2 $\sigma$ ) for p  $\gamma_t$ -shift optics
  - $r_{avg}$ =5.4 mm (2 $\sigma$ ) for ion optics
- But when calculating temperature rise analytically:

$$\Delta T = \frac{N \cdot dE/dx}{c \cdot A \cdot \rho}$$

- thin targets, no phase transition
- no shock waves, no heat transfer or radiation
- Full design beam power for
  - Protons: no problem!
  - Heavy ions (5x10<sup>11</sup> U<sup>28+</sup>) are at the limit!
  - But: Before it comes to melting, s.c. magnets will quench already (6 orders of magnitude earlier)

HELMHOLTZ

|                                                                     | <b>\</b>                       | Ň    |       |              |
|---------------------------------------------------------------------|--------------------------------|------|-------|--------------|
| Material                                                            | Steel                          |      |       |              |
| Used in                                                             | Yoke, He-<br>pipes<br>Chambers |      |       |              |
| Melting Temp. / K                                                   | 1,921                          |      |       |              |
| Specific heat <i>c</i> / J/(g*K)                                    | 0.49                           |      |       |              |
| Latent melting heat / J/g                                           | 270                            |      |       |              |
| Total melting energy<br>density (T=15 K) / J/g                      | 1,204                          |      |       |              |
| Total melting energy<br>density (T=293 K) / J/g                     | 1,068                          |      |       |              |
| Density $\rho / kg/m^3$                                             | 7,870                          |      |       |              |
| <i>Proton</i> beam spot radius for<br>melting @15K / mm             | 0.4                            |      |       |              |
| Max. $\Delta T$ for <i>proton</i> beams with 3.8mm spot radius / K  | 28                             |      |       |              |
| <i>Uranium</i> beam spot radius<br>for melting @15K / mm            | 5.6                            |      |       |              |
| Max. $\Delta T$ for <i>Uranium</i> beams with 5.4mm spot radius / K | 2,291                          |      |       |              |
|                                                                     |                                | FΔIŘ | ) - G | 5 <b>1</b> - |
|                                                                     | 10                             |      |       |              |



#### Potential beam damage in SIS100: Slow extraction

- When a
  - full intensity high energy heavy ion beam spirals out
  - in a short time (µs...ms) and
  - hits a small volume (e.g. wires, thin vacuum chambers)
  - especially at room temperature regions,
  - material can melt.
- Unavoidable during slow (KO) extraction: Heavy ions colliding with the electrostatic septum wires are stripped and lost
  - At least ~10 % of the beam will hit the wires during slow extraction.
  - W-Re wires <u>day 0 version</u>: 100 μm "thick", <u>final version</u>: 25 μm thick (thermal / stability issues)
  - Warm (radiation hard) quadrupoles behind the septum.
  - Loss will be controlled (collimator / low desorption rate surface).
- Step width of particles at slow extraction has to be limited to avoid over-heating of the wires
  - Low intensity pilot beams,
  - Phase space tomography,

ELMHOLTZ

GEMEINSCHAFT

- Limiting extraction length at full heavy ion intensity to durations e.g.> 5 s.
- Active protection with beam loss monitors (BLM's)







## **Emergency dump of SIS100**

- Part of the active machine protection.
- Emergency dump system:
  - Fast bipolar kicker magnets for extraction,
  - 2.5 m long, internal absorber block below the magnetic septum #3.
- Design:
  - No need for synchronous ramping of beam line to the external dump and "dead time" during ramp up of HEBT switching magnets.
  - Beam dump will happen in ~26 µs after generation of request → fast enough for nearly all processes.
  - Various abort signals will be concentrated in a switch matrix (allows masking of some sources e.g. for low intensity beams). Incorporation of e.g. experiment aborts is easily possible.
  - Kicking into a coasting beam will result in up to 25% beam losses (smear out after emergency dump).
     Have to develop more sophisticated methods (Shut off KO extraction, rebunch, kick?).
- Absorber:
  - Special chamber in lower part of magnetic septum #3
  - 20 cm graphite in front, 225 cm absorber (W, Ta, ...)
  - Tilted or saw-tooth surface to smear out Bragg peak in the absorber material (limits temperature rise).



HELMHOLTZ

## FLUKA simulations of emergency dump

distance along y-axis (cm)

Simulation assumptions

ELMHOLTZ GEMEINSCHAFT

- 5\*10<sup>11</sup> U<sup>28+</sup>, 1.0-2.7 GeV/u
- 2.5\*10<sup>13</sup> **p**, 29.0 GeV/u
- Gaussian beam distribution with  $\sigma_{x/y} = 3 \text{ mm}$
- Full beam energy deposited within < 1µs</li>
- No melting, but absorber surface has to be inclined (e.g. by 20° which gives a factor of 4 less temperature rise).
- Both maximum and average energy depositions are well below quench limit.
- With W instead of Ta, energy deposition in the SC quadrupole coils drops by another 30%.

| Ion                                             | Max. Coil<br>energy<br>deposition<br>/ mJ/g | Avg. Coil<br>energy<br>deposition<br>/ mJ/g | Quench<br>margin  |
|-------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------|
| 2.5*10 <sup>13</sup> p, 29 GeV                  | 0.29                                        | 0.063                                       | <b>5.5</b> / 25.4 |
| 5*10 <sup>11</sup> U <sup>28+</sup> , 1.0 GeV/u | 0.01                                        | 0.003                                       | 145 / 592         |
| 5*10 <sup>11</sup> U <sup>28+</sup> , 2.7 GeV/u | 0.10                                        | 0.025                                       | <b>16</b> / 64    |



## Risk assessment: System-FMEA

- Failure Modes and Effects Analysis (FMEA) on the system level of SIS100
  - Goal: Identify the machine failures in a rational approach,
  - Done according to IEC 61508,
  - Standardized values for personnel safety,
  - Subjective chosen values for machine protection (separately!).
- How to get Lambda or MTTF (Mean Time To Failure) values ?
  - Experience with existing or similar components/prototypes, ...
    - GSI data,
    - Nuclotron data,
    - LHC data.

ELMHOLTZ

GEMEINSCHAFT

- $\lambda_{UCL} = \frac{\chi^2_{\alpha, \nu}}{2T} \quad with \ \nu = 2f + 1$
- Calculated (on a per-part basis) according to ISO 13849-1:2008 and MIL Handbook for
  - **SCU** (Scalable Control Unit):  $\lambda = 8626$  FIT (Failures in 10<sup>9</sup> h) MTTF (Mean Time To Failure) = 13.2 years
  - Quench detection cards from KIT: λ = 1240 FIT MTTF = 92 years

| Severity | Meaning<br>for<br>personnel                 | Meaning for the machine                             | Examples                                                                                                                                                       |
|----------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S1       | Minor injuries<br>at worst                  | Short<br>accelerator<br>recovery time<br>MTTR < 2 h | <ul> <li>Target irradiated wrongly</li> <li>Magnet quench</li> <li>Superficial damage of a beam pipe</li> <li>Fuse blown</li> <li>Machine activated</li> </ul> |
| S2       | Major injuries<br>to one or more<br>persons | Accelerator<br>recovery time<br>MTTR < 1 d          | <ul> <li>Target destroyed</li> <li>Protective devices (e.g. at septum) burnt through</li> <li>Safety valves in He supply or return blown</li> </ul>            |
| S3       | Loss of a single<br>life                    | Long shutdown<br>MTTR < 1 a                         | <ul> <li>Septum wires burnt through</li> <li>He safety valves of cryostats<br/>blown</li> <li>Busbar/cables burnt</li> <li>Holes in beam pipes</li> </ul>      |
| S4       | Multiple loss of<br>life                    | Catastrophe                                         | Should never happen!                                                                                                                                           |

14

F(AIR-GSŤ-



#### **Risk assessment:** How to define SIL levels?

SIL

- When defining a safety function, e.g.: ٠ "Dump Magnet Energy when a quench occurs", how reliable the function has to be?
- S3: Damage so large that downtime >> 1d ٠
- A1: No personnel present when powering S.C. ٠ magnets!
- G1: It is possible to prevent the magnet from • quenching (e.g. observing temperature)
- W2: Possibility for a quench is >5%, but <25% of ٠ operation time
- SIL3 is necessary for achieving a safe quench detection and dump resistor activation, PFH< $1x10^{-7}$  failures/h.
- Other example: PSS: "Deny user request to • enter restricted area during beam operation." also SIL3, but with PFD< $1x10^{-3}$  failures/demand.

ELMHOLTZ GEMEINSCHAFT



|          | Low demand<br>[failure/request]<br>Average probability of<br>dangerous failure at request<br>of the safety function |                             | High demand or continuous<br>request [failure/h]<br>Average probability of<br>dangerous failure of the<br>safety function |                        |
|----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|
| SIL / PL | PFD <sub>avg, min</sub> (>=)                                                                                        | PFD <sub>avg, max</sub> (<) | PFH <sub>min</sub> (>=)                                                                                                   | PFH <sub>max</sub> (<) |
| 4 / e    | 1,00E-05                                                                                                            | 1,00E-04                    | 1,00E-09                                                                                                                  | 1,00E-08               |
| 3 / d    | 1,00E-04                                                                                                            | 1,00E-03                    | 1,00E-08                                                                                                                  | 1,00E-07               |
| 2 / c    | 1,00E-03                                                                                                            | 1,00E-02                    | 1,00E-07                                                                                                                  | 1,00E-06               |
| 1/b      | 1,00E-02                                                                                                            | 1,00E-01                    | 1,00E-06                                                                                                                  | 1,00E-05               |



A = Aufenthaltswahrscheinlichkeit

A1: selten bis etwas öfter

A2: häufiger bis andauernd

G = Gefahrenabwehr

G1: möglich unter bestimmten Bedingungen G2: kaum möglich

W = Eintrittswahrscheinlichkeit

W3: relativ hoch

Risk graph

### Risk assessment: Magnets, busbars, current leads

- Failures:
  - Quenches
  - Thermal runaways
  - Turn-to-GND short
  - Turn-to-Turn short
- Most severe failures:
  - Quenches (destroys busbars or magnet coils)
  - Dipole:
     full beam could hit the E-Septum wires in ~1 ms
  - Quadrupole, Chrom. Sextupole, Res. Sextupole, Octupole:

beam could hit the Halo collimators, E-Septum wires or external targets / detectors during slow extraction in  ${\sim}1~\text{ms}$ 

- Chosen mitigations:
  - Magnet interleaving Quench Detection (QD)
  - Emergency dump for detected failures (started just before magnet energy dump)
  - Interlocks
- Failsafe behavior:
  - ~99% reduction of risk
  - Already incorporated in hardware design (SIL3 for QD!)
  - Turn-to-Turn short only detectable during commissioning and pilot beam operation!

HELMHOLTZ

GEMEINSCHAFT

Downtime / h/a 'Events / a





Dangerous detected failures



## Risk assessment: Power Converters

- Failures:
  - DCCT or control loop causes more or less current than set
  - IGBT shorts
  - Media (cooling water) or sensor failures
  - Primary Voltage supervision sensor failures
  - PE failures (dipoles, quadrupoles, septum 3)
- Most severe failures:
  - Dipole PC:
     full beam could hit the E-Septum wires in ~1 ms
  - Quadrupole, Chrom. Sextupole, Res.
     Sextupole, Octupole, Radres. Quadrupoles PC's:

beam could hit the E-Septum wires or external targets / detectors during slow extraction in ~1ms

- Chosen mitigations:
  - Redundant DCCT in some cases
  - Emergency dump for detected failures (started just before magnet energy dump)
  - Interlock
- Failsafe behavior:

ELMHOLTZ GEMEINSCHAFT

- ~92% reduction of risk
- Still (minor) modifications in hardware design necessary



Dangerous undetected failures

es Dangerous detected failures



#### Risk assessment: RF acceleration system

#### • Failures:

- LLRF Amplitude control/DAC failure
- LLRF DDS / Group DDS failure
- Cavity GAP Arc ignition, shorts
- Resonance frequency control failure
- Driver / Power Amplifier failures
- B2B Transfer unsynchronized
- Media or sensor failure
- 50 Ohm Terminator failure
- Most severe failure:
  - Gap arc ignition:

At least a part of beam will hit cryo collimators (spiraling into it in around 1 ms), happens quite often

- Chosen mitigations:
  - Emergency dump for detected failures
  - Interlock (for media or sensor failures)
- Failsafe behavior

ELMHOLTZ

GEMEINSCHAFT

- ~89% reduction of risk
- Minor modifications in hardware/software design are necessary





#### Risk assessment: Injection/Extraction system

- Failures:
  - Single kicker does not fire, voltage deviation
  - Single kicker fires unintentionally
  - E-Septum sparking
- Most severe failures:
  - E-Septum sparking: full beam could hit E-Septum wires
  - Single extraction kicker does not fire / voltage deviation:

beam can hit septum or HEBT / detectors / targets

- Chosen mitigations:
  - Emergency dump
     partial beam loss can not be prevented
    - no warning time
    - up to  ${\sim}30\%$  beam loss when kicking in coasting beam during slow extraction
  - Low intensity pilot beam for optimizing settings
  - E-Septum has to be actively protected (wire supervision)
  - "Cleaning" of beam which remains after extraction kick onto the emergency dump.
- Failsafe behavior:
  - 89% reduction of risk
  - Further tracking studies will follow to identify and reduce risks

HELMHOLTZ



Downtime / h/a Events / a

#### Risk assessment: Global/Local cryogenic system

400

350

300

250

#### • Failures:

- Valve or valve control failure
- He supply/return line rupture or leak
- Voltage breaker leakage or rupture
- Valve bellow rupture
- Compressor / pressure regulation failure
- Most severe failures:
  - Voltage breaker leakage or rupture: Paschen limit, repair time
  - Valve bellow and He supply/return line rupture: long shutdown for repair
  - Most failures would result in quench, but this is taken by pressure / temperature sensors and QD.
- Chosen mitigations:
  - Pressure readout, Emergency dump (started with magnet energy dump, which is more important) for fast processes
  - Interlock for slow processes
  - QA (Quality Assurance) for all weldings and QD (Voltage tabs) for all interconnections
  - Maintenance plans for valves
- Failsafe behavior:
  - 88% reduction of risk
  - Care has to be taken in design and read-out of insulation vacuum pressure (cold cathode gauges) – some failures
    - have short rise times.

HELMHOLTZ | GEMEINSCHAFT



### Risk assessment: Control system

- Hardware, Software and Operators
- Failures:
  - Wrong data delivered to device
  - − Timing system does not trigger → all effects possible...
  - Slow extraction efficiency too low
  - Feedback systems (Orbit, TFS, LFS) fail (currently not calculated)
- Most severe failures:
  - Software errors: full beam could hit anywhere
  - Physic model errors: full beam could hit anywhere
  - Operator thinks in the wrong direction: full beam could hit anywhere
- Chosen mitigations:
  - Low intensity pilot beam for verifying optics, physics model and machine settings, intensity ramp up concept, locking of critical parameters at high intensities
  - BLM's, Transmission supervision, Emergency dump
  - Optics check for machine setting parameters, Training for operators
  - Data check (read-back) of machine settings (cyclic every few minutes); Set and Actual Value - window comparison
- Failsafe behavior
  - ~99% reduction of risk
  - Human factors still an issue
  - SCU and timing system already designed with very large MTBF





Dangerous undetected failures Dangerous detected failures



#### **Risk assessment:** Beam dynamics and others

- Failures: •
  - Beam instabilities (difficult to estimate correctly)
  - Beam in kicker gap
  - UHV pressure rise, vacuum leakage, FOD (objects in vacuum chamber - LEP, ESR, SIS18)
  - HEBT / Experiment note ready, EMC, Earthquakes, ... (not calculated)
- Most severe failures: .
  - Beam instabilities
  - Cold UHV chamber leaks (long downtimes for repair!).
- Chosen mitigations: •
  - Emergency dump
  - BLM's, cryo catcher current readout
  - Robot for searching "UFO"s
- Failsafe behavior: •

ELMHOLTZ

GEMEINSCHAFT

- 33% reduction of risk
- One never knows what high energy / intensity or compressed beams do in real
- Beam physics studies are ongoing



Downtime / h/a 
Events / a

## SIS100 risk assessment: Results

- Most severe (hard to detect at warm and long repair times): <u>cold leaks / defects.</u>
- Heavy ion beam power of SIS100 is high enough to damage sensible equipment (e.g. e-septum).
- All devices are designed self-protecting when internal failures occur, but not necessarily have optimum behavior with respect to the beam. Work is progressing to improve this.
- <u>For emergency dump:</u> Beam losses caused by spurious errors (e.g. power converter problems, RF failures, quenches, ...) as well as dynamically unstable beams can be mitigated effectively by the emergency dump system.
- By failsafe concept, up to 85% of the total failures in time can be detected or mitigated.
- Given 6,000 h operating hours per year, an availability of 66% (3,957 h/a) is currently estimated.

ELMHOLTZ GEMEINSCHAFT





## Comparison of SIS100 with CERN PS

#### for Proton operation:

| Similarities                | SIS100 (γ <sub>t</sub> -<br>shift<br>settings) | PS                 |
|-----------------------------|------------------------------------------------|--------------------|
| Particles per cycle         | 2*10 <sup>13</sup>                             | 3*10 <sup>13</sup> |
| Injection energy / GeV      | 4.0                                            | 1.4                |
| Extraction energy / GeV     | 28.8                                           | 20.0               |
| Stored energy Inj. / kJ     | 12.7                                           | 6.8                |
| Stored energy Extr. / kJ    | 91.1                                           | 96.9               |
| Max. beam radius Inj. / mm  | 29                                             | 29                 |
| Max. beam radius Extr. / mm | 12                                             | 8                  |
| Min. beam radius Inj. / mm  | 3.6                                            | 17.7               |
| Min. beam radius Extr. / mm | 1.5                                            | 5.6                |

| Differences                                | SIS100 | PS   |
|--------------------------------------------|--------|------|
| Magnet type                                | SC     | NC   |
| Beam pipe vacuum chamber<br>thickness / mm | 0.3    | 1.5  |
| Heavy ion beam energy / kJ                 | 51.5   | ~7.1 |

- For p operation, CERN PS and SIS100 similar in energy and spot size (=damage potential); for heavy ions, SIS100 is more dangerous...
- No major accidents in PS due to beam losses
- Spot size in SIS100 even larger with  $\gamma_t$ -jump settings
- LHC (one beam): 362 MJ => 4 000 times more energy!

HELMHOLTZ



## 2.5\*10<sup>13</sup>, 29 GeV Protons energy deposition in the dump



- After an absorber length of 1 m:
  - hardly any primary protons left
  - homogeneous energy distribution by secondaries
- Temperature values well below the sublimation/melting points

ELMHOLTZ GEMEINSCHAFT

 Energy deposition values in upper and lower coils identical within 30 %



