Mitglied der Helmholtz-Gemeinschaft

Overview HESR

29th July 2015

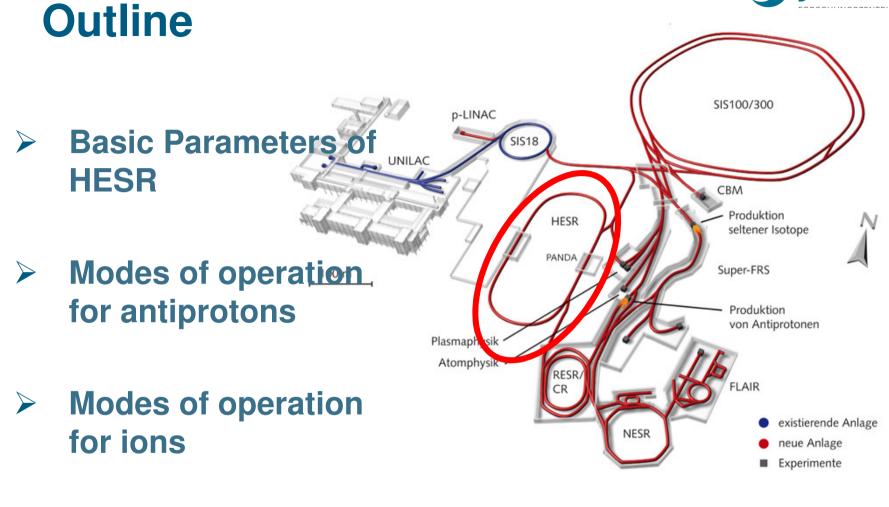
HIC4FAIR

Dieter Prasuhn

HESR consortium members

(i) Forschungszentrum Jülich,

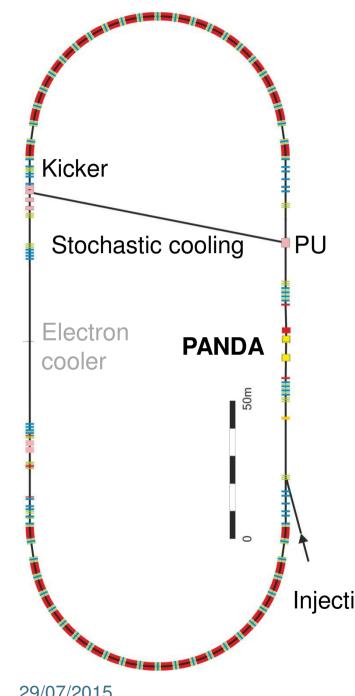
(ii) INCDIE ICPE-CA Bucharest,


(iii) ISYST Slovenia, 🛞

(iv) GSI Darmstadt.

Status of technical components Mitglied der Helmholtz-Gemeinschaft

Basic parameters of HESR



• **PANDA:** Antiproton-proton interaction

• APPA: Stored Particles Atomic Physics Research Collaboration

• NUSTAR: *Isomeric Beams*, *Li*fetimes and *Masses*

With heavy ion and radioactive beams

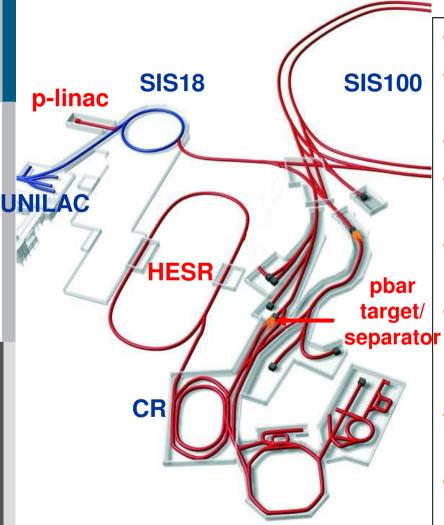
Basic Data of HESR

- Circumference 574 m 2 arcs of 155 m
 - 2 straight sections of 132 m
- ➤ Magnetic rigidity: 5 50 Tm
- Injection from CR at 13 Tm
- Maximum dipole field: 1.7 T
- Dipole field at injection: 0.4 T
- Dipole field ramp: 0.025 T/s

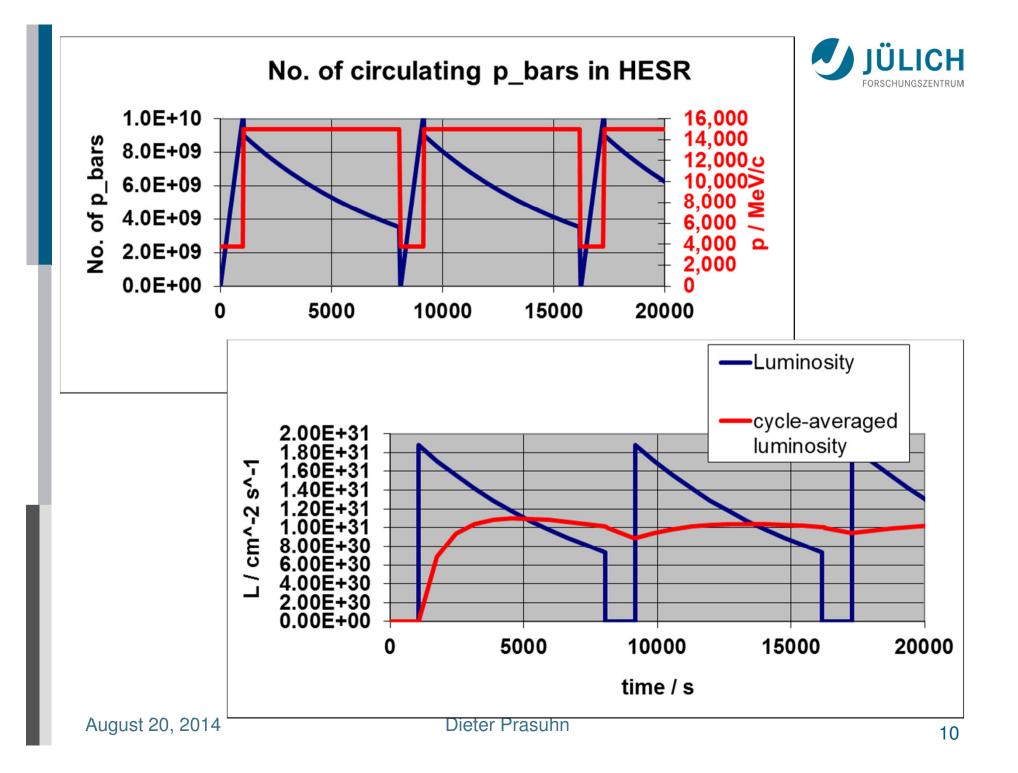
Injection from CR

29/07/2015

Mitglied der Helmholtz-Gemeinschaft


Modes of operation for antiprotons

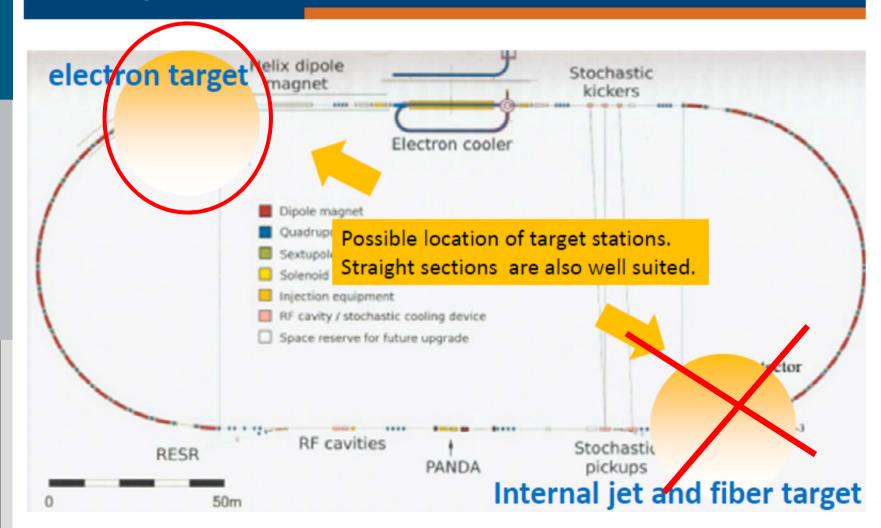
Modes of Operation with PANDA


Experiment Mode	High Resolution Mode	High Luminosity Mode					
Target	Hydrogen I	Pellet target					
	with 4*10 ¹⁵						
rms-emittance	1 mm	mrad					
Momentum range	1.5 – 8.9 GeV/c	1.5 – 15.0 GeV/c					
Intensity	1*10 ¹⁰	1*10 ¹¹					
Luminosity	2*10 ³¹ cm ⁻² s ⁻¹	2*10 ³² cm ⁻² s ⁻¹					
rms-momentum resolution	5*10 ⁻⁵	1*10-4					

Antiproton Chain (Modularised Start Version)

- acceleration in p-linac to 70 MeV
- multiturn injection into SIS18, acceleration to 4 GeV
- transfer of 4 SIS pulses to SIS100
- acceleration to 29 GeV and extraction of single bunch
- antiproton target and separator for 3 GeV antiprotons
- collection and 10 s pre-cooling of 10⁸ p bars in the Collector Ring CR
- Every 10 s transfer of 10⁸ p-bars at 3 GeV to HESR
- <u>accumulation</u> and storage of antiprotons in the HESR

IÜLICH



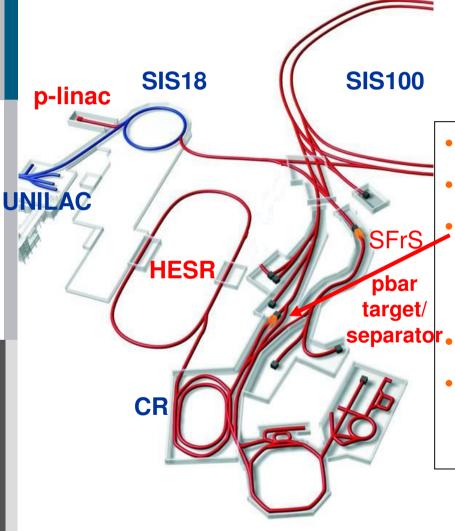
Modes of Operation for heavy ions

Experimental Conditions at the HESR

Data for Heavy Ions (238U92+)

Injection:

 $B^*\rho=12 \text{ Tm} (740 \text{ MeV/u})$ $\beta = 0.83$


Maximum magn. rigidity

B*ρ=50 Tm (5 GeV/u) β =0.98

Minimum magn. Rigidity

 $B^*\rho = 5 \text{ Tm} (170 \text{ MeV/u})$ $\beta = 0.53$

Possible ways for ions into the HESR JULICH (Modularised Start Version)

- acceleration in UNILAC and SIS18
- Bypass the antiproton target
- collection and pre-cooling of ions in the Collector Ring CR
- tor transfer of ions at 12 Tm to HESR
 - <u>(accumulation and) storage,</u> acceleration and cooling of ions in the HESR

Mitglied der Helmholtz-Gemeinschaft

Status of technical components

Magnets (Tendering by FAIR)

Dipoles:

May 2015: 1st dipole in Jülich

- 1st of its kind ready and measured in January 2015
- Series production released
- Dipole is reference magnet for all following dipoles
- 1st magnet arrived in Jülich middle of May this year
- Now 3 dipoles in Jülich
- Every 2 weeks one dipole is expected to be delivered
- Mounting of vacuum chambers in Jülich
- Storage until building is ready

Delivery of last dipole (46) expected for Q2/2017

Quadrupoles:

- 1st of its kind accepted
- Reference magnet for the next magnets
- 5 quadrupoles expected to arrive in Jülich this week
- In Jülich mounting of the complete units
 Sextupole – Quadrupole – Steerer planned

Delivery of last quadrupole (84) expected Q2/2017

Dieter Prasuhn

Power Converters

Quadrupole power converters:

1st of its kind in house and accepted since Q3/2014 All Quad-PoCo have been delivered to Jülich in the middle of July 2015

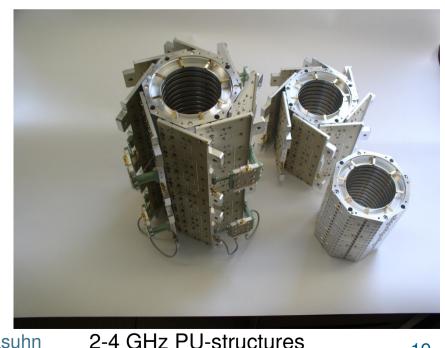
Dipole test power converter:

Is delivered and used by the dipole manufacturer for the measurement of the dipoles

The HESR dipole PoCos:

are specified, but will be ordered matched to the CC schedule

RF and stochastic cooling


First amplifiers have arrived and been tested in Jülich

Tanks for stochastic cooling are under construction, 1st Pickup tank is expected to be ready Q3/2015, 1st kicker tank Q4/2015. They will be installed in COSY for tests

Barrier bucket prototype in use at COSY

First tank arrived in Jülich

Dieter Prasuhn

Vacuum

- Design vacuum for HESR had been 10⁻⁹ mbar
- According to an early recommendation of MAC the vacuum system was upgraded to a bakeable system
- NEG-coating plus heating jackets are foreseen in the dipole sections from the beginning

Heating jackets for the dipole chambers on the test bench

29/07/2015

Status:

Straight vacuum chambers for the whole HESR are in house

- Bent vacuum pipes for the dipoles are ordered
- Ist bent dipole vacuum chamber is NEG-coated by GSI

The detailled Specs for the slow control will be finished autumn 2015.

Injection

Injection kicker and supply: Design of the manufacturer is accepted, Kicker tank is under construction

First test expected Q3/2015

Diagnostics

Prototype BPM is under construction and will be tested end of this year.

Then series production will start.

Further In-Kind contributions:

Romania: Sextupoles and steerers:

Prototypes of each kind have arrived in Jülich in Q2/2015, series production has started.

Time schedule for delivery to Jülich is matched to the mounting schedule with quadrupoles

Power Converters:

Prototype is accepted, series production started

Material for the series production is ordered

Diagnostics: Specifications are prepared together with GSI

Slow control: Specifications for vacuum control are under discussion together with GSI

HESR overall time schedule

	Vorgangsname	Dauer 🚽	Fertig 🖕	2011		00 0		2012 4 Q1 Q2 Q3 (2013				2014				2015				2016 4 Q1 Q2 Q3 Q4			201		100		2018	
3			stellen	<u>Q1</u>	02	Q3 0	24 0	11 Q	2 Q.	3 Q4	Q1	: 02	Q3	Q4	Q1 :	Q2 :	Q3 (Q4	Q1 :	Q2 :	Q3 (Q4	Q1 C	12 0	23 Q4	121	1 Q2	103	Q4	Q1	:
4	□ HESR	91.85 M	Di 16/01/18	100000																	~~~					\$				-	
5	Magnets	91.55 M	Mo 08/01/18						····						·····						·····		·····	·····			÷		÷	P	÷
8	Power Converters	85.05 M	Mo 10/07/17		:			:	:	:		:					:				:		:	:	:	÷	÷	۲			Î
)1	H RF-Systems	80.85 M	Di 14/03/17		:			:	:	:		:	:		:	:	:		:	:	:		:	:	:		ę.	÷	÷		÷
4	Injection/Extraction	80.85 M	Di 14/03/17		: :			:	:	:		:	: :		:	:	:		:	:	:		:	:	:	– –	Ŗ	Ì	È		Ĩ
7	Beam Diagnostics	89 M	Fr 27/10/17		:			:	:	:		:			:	:	:		:	:	:		:	:	:	-		:			Ï
0	+ Vacuum	91.85 M	Di 16/01/18					:	:	:		:			:	:				:	:		:	:	:	=		.	:	7	
3	Electron Cooling	79.2 M	Do 26/01/17		:			:	:	:		:	: :		:	:	:		:	:	:		:	:	:	72	1	ł	-		Ï
6	Stochastic Cooling	81.9 M	Mi 12/04/17		: :			:	:	:		:	: :		:	:	:		:	:	:		:	:	:	=	—	÷	Ě		Ĩ
i9	Experimental Devices	79.2 M	Do 26/01/17					:	:	:		:					:				:		:	:	:	7		-	-		-
)2	PANDA integration	82 M	Fr 14/04/17		:			:	:	:		:			:	:	:		:	:	:		:	:	:	–	÷,	÷	÷		Î
								ł	÷	÷		ł				ł	ł		ł	ł	÷		÷	÷	÷		÷	÷	ł		÷
																							į	Ì	÷		į	Ì	į		Ì
								:	:	:		:			:			ſ		:			:	:	:		:	:	:		£

All components of HESR are scheduled to be "ready to move into tunnel" 2017

