Super-FRS Performance: Production, Separation, Detection Helmut Weick, GSI HIC4FAIR workshop, Hamburg, 30.07.2015 - Production Cross Sections - Separation - Identification Detectors ## **Production of nuclides from** 52 considered primary beams ### 36Ar --> 12C target ### 112Sn --> 12C target ### 208Pb --> 12C target # 238U --> 12C target #### **Best Beams for Production** **Optimum cross section and transmission** 3x10¹¹/s for all beams, including acceptance, ABRABLA from A. Kelic All Fission fragments after target, 1.5 GeV/u ²³⁸U --> 4 g/cm² ¹²C #### Separation only by Bp #### Separation after pre-separator ($B\rho$ - ΔE - $B\rho$) ### Separation after main separator ($B\rho$ - ΔE - $B\rho$) x ($B\rho$ - ΔE - $B\rho$) ### **Separation Performance** 1.1 A GeV ²³⁸U on 4 g/cm² C target, two Al degraders d/R=0.3, d/R=0.7 For fission fragments separation is difficult, other beams more pure ### Separation Performance, ¹⁰⁰Sn ### Separation of 100Sn produced from 238U $\frac{\text{from}^{\ 124}\text{Xe} \quad \text{from}^{\ 238}\text{U}}{\text{0.09}} \quad 0.03 \text{/s} \\ \Sigma_{\text{pre-sep.}} \quad 6400 \quad 3.3 \text{x} 10^6 \text{/s}$ $\Sigma_{\text{main sep.}}$ 2.1 5700 /s ### Separation with enlarged beam spot Fast extraction with intense U beam requires larger beam spot on target. Stochastic cooling is a mass selective RF filter. $\Delta(m/q)/(m/q) \sim 10^{-3}$ cooled down to $\Delta p/p \sim 10^{-4}$ \rightarrow scrapers in rings can be used. Still Super-FRS must separate nuclides with $\Delta(m/q)/(m/q) < 10^{-3}$. For ¹³²Sn next critical ones ¹²⁴Ag and ¹⁴⁰I (<10⁻³) are separated. Problems only with m/q = 2.0 or 2.5 # Separation of Isobars in Range - LEB with Energy Buncher - ¹³³Sn from fission, after two thick degraders (d/R=0.5), energy bunched at 340 MeV/u with monoenergetic degrader # Separation of ¹⁰⁰Sn in Range # 1000 MeV/u ¹²⁴Xe -> 6g/cm² C-target, twice d/R=0.5 Al degrader Ranges of all fragments arriving at last degrader # Identification in flight $$B\rho = m/q \beta \gamma c_0$$ Identification of single ions with particle detectors. - Ionization chamber (MUSIC) -> Z - Si and scintillators, ToF -> $\beta\gamma$ - x-position, B-field -> Bρ Requires rates < 10⁵-10⁶ ions/s, some experiments < 100 /s Dissertation Vladimir Henzl, CTU Prag 2005. ### **Detectors** Position: X, Y by twin GEM-TPC for double hit reconstruction 700-800 kHz reached for Au ions at 90% eff., up to 2 MHz possible, single TPC ~100 kHz, also for angle measurement and focus tuning. MUSICs: 0.1 – 1 MHz, sample double hits higher energy needed for high Z ions (>500 MeV/u for U) ToF: plastic scintillators, radiation hard Si for position and ToF **Profiles:** SEM grids, IR camera on target Intensity: Seetram, diamond, IC, trafo ## Summary Production rates with cross sections calculated. Good basis for new nuclides still larger uncertainty. Requires many different primary beams. #### **Separation:** Most pure RIBs of all fragment separators in the world. Still some cases come with high background (fission). Separation in range is even better. Identification needs fast detectors, under development. Together selectivity 1:10²⁰ of what was produced. ### 130Cd Separation Separation of isobars in range. $\sigma_{\rm R}$ (130Cd) = 7.5 mg/cm² **Nuclides transmitted to and stopped in gas cell** Ν ¹³³Sn from uranium fission E = 1217 MeV/u, 3 g/cm² C-target after two thick achromatic degraders (d/R=0.5). Wide energy spread of fission fragments makes separation hard. | ¹³⁰ Xe | ¹³¹ Xe | 132 X e | ¹³³ Xe | ¹³⁴ Xe | ¹³⁵ Xe | ¹³⁶ Xe | 137Xe | ¹³⁸ Xe | ¹³⁹ Xe | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | | | | | | | | | | | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | | | | | | | | | | | | | | | 2.97e-3
0% | 5.36e+5
0.047% | 2.09e+4
0.001% | | | | | | | ¹²⁸ Te | 129Te | 130Te | 131 _{Te} | 132Te | 133Te | 134Te | 135Te | ¹³⁶ Te | 137 _{Te} | | 15016 | 15016 | 10016 | le | 19216 | 19916 | 19416 | 100 LG | 13016 | 151 TE | | | | | | 2.67e+7 | 5.93e+6 | 1.26e+1 | | | | | | | | | 1.051% | 0.492% | 0% | _ | | | | 127Sb | 128Sb | 129Sb | 130Sb | 131Sb | 132Sb | 133Sb | 134Sb | 135Sb | ¹³⁶ Sb | | | | | | | 3.49e+6 | 1.46e+7 | | | | | | | _ | | _ | 0.597% | 5.552% | | | | | 126Sn | 127Sn | 128Sn | 129Sn | 130 Sn | 131 Sn | 132Sn | ¹³³ Sn | 134Sn | 135Sn | | | | | | | | 2.58e+4 | 1.79e+5 | 5.44e+2 | | | E | В | | J | | | 0.07% | | 0.102% | | | ¹²⁵ ln | ¹²⁶ ln | 127 _{in} | ¹²⁸ ln | ¹²⁹ ln | ¹³⁰ ln | 131 In | 132 _{ln} | 133 _{ln} | ¹³⁴ ln | | | | | | | | | 7.6e-1 | 7.02e+2 | 1.87e+0 | | 8 | <u> </u> | 8 | E | <u> </u> | E | - | 0.001% | 7.917% | 0.642% | | 124Cd | 125 Cd | 126 Cd | 127 Cd | 128Cd | 129Cd | 130Cd | 131 Cd | 132Cd | 133Cd | | | | | | | | | | | | | | Б | | | | | | | | | | | • | | | | | | | | | # **Best Energy for Range Bunching** | _ | otootmo | | | otootmo | | | |--|---------------------------------|------------------------|--|--|--|----------------------------------| | | ıc+ac+me | acene | | c+ac+me | | | | E_(238U) = | 438.81 | 438.84 MeV/u | E_(238U) = | 530.0 | | MeV/u | | at exit of Super-FF | ≀S | | at exit of Super-Fl | RS | | | | rate 132Sn = | 5.0E-06 | 4.1⊞-06 ions / primary | rate 78Ni = | 1.3E-10 | | ions / primary | | total rate = | 9.5E-05 | ions / primary | total rate = | 2.7E-05 | | ions / primary | | ratio = | 19.1 | | ratio = | 2.1E+05 | | | | after slowing-down | 1 | after slowing-down | | | | | | σ R = | 3.68 | 6.71 mg/cm^2 Al | σ_R = | 8.57 | | mg/cm^2 Al | | _ | | | | | | | | | | | | | | | | | | | actactma | | | | | | ic+ac+me | | ac+ac+me | | | | | E (40Ar) = | | | | | | | | \ \ 10/ \\ / | 200.0 | 2000 MeV/u | E_(238U) = | 1000.0 | | MeV/u | | at exit of Super-F | # | 2000 MeV/u | E_(238U) = at exit of Super-F | 1000.0 | | MeV/u | | _ ` , | # | 8.2E-11 ions / primary | _\ _ | 1000.0 | | MeV/u ions / primary | | at exit of Super-F | RS | 8.2E-11 ions / primary | at exit of Super-F | 1000.0
RS | | | | at exit of Super-F
rate 19C = | RS
1.1E-10
1.1E-10 | | at exit of Super-F
rate 232Fr = | 1000.0
RS
3.8E-10 | | ions / primary
ions / primary | | at exit of Super-F
rate 19C =
total rate = | RS
1.1E-10
1.1E-10
1.0 | 8.2E-11 ions / primary | at exit of Super-F
rate 232Fr =
total rate = | 1000.0
RS
3.8E-10
4.4E-07
1154.9 | | ions / primary
ions / primary | Higher initial energies increase σ_R and decrease overall efficiency but help in particle identification and setup (MUSIC for high Z). Low Z could be FRIB or RIKEN. # ²³⁸U+¹²C at 1AGeV # Residual Dose Rates - FPF2 - Dose rate by activation around FPF2, calculated with FLUKA Al degrader and magnets as components Beam up to: $3x10^{10}$ /s fission fragments for $1x10^{12}$ 238 U/s on target. Downscaled to more real average beam intensity (x 1/5). ### Comparison FRS - Super-FRS Transmission gain ### Fragmentation ### Fission Apertures (Super-FRS) $\approx 2 \text{ x Apertures (FRS)}$ ### Charge-separation capability for different Energies