

TECHNISCHE UNIVERSITÄT DARMSTADT

NUSTAR at GSI Day-0 (Phase-0, 2018ff)

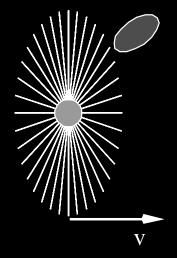
Heiko Scheit

TECHNISCHE UNIVERSITÄT DARMSTADT

July 31, 2015

EM excitation I EM excitation (2)	 excitation of projectile in Coulomb field of target
Requirements	
Summary	

EM excitation


EM excitation (2)

Requirements

Summary

• excitation of projectile in Coulomb field of target

• Adiabaticity parameter $\xi = \frac{\tau_{\text{coll}}}{\tau_{\text{nucl}}}$ $\tau_{\text{nucl}} = \omega_{fi}^{-1} = \frac{\hbar}{E_x}$ $\tau_{\text{coll}} = \frac{b}{\gamma v}$

EM excitation EM excitation (2)

Requirements

Summary

• excitation of projectile in Coulomb field of target

• Adiabaticity parameter $\xi = \frac{\tau_{coll}}{\tau_{nucl}}$ $\tau_{nucl} = \omega_{fi}^{-1} = \frac{\hbar}{E_x}$ $\tau_{coll} = \frac{b}{\gamma v}$ • excitation only if $\xi < 1$ (fast collision)

$$E_x \leqslant \frac{\gamma \beta \cdot \hbar c}{r} \sim \gamma \beta \ 20 \ \mathrm{MeV}$$

b

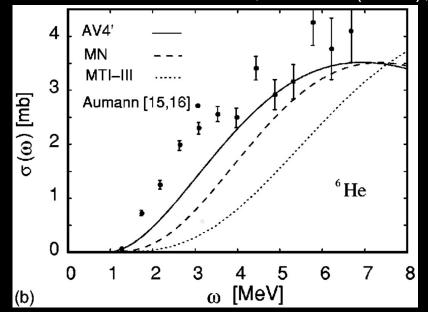
TECHNISCHE UNIVERSITÄT DARMSTADT

EM excitation EM excitation (2)

Requirements

Summary

• 50 MeV/u: $E_x < 5$ MeV

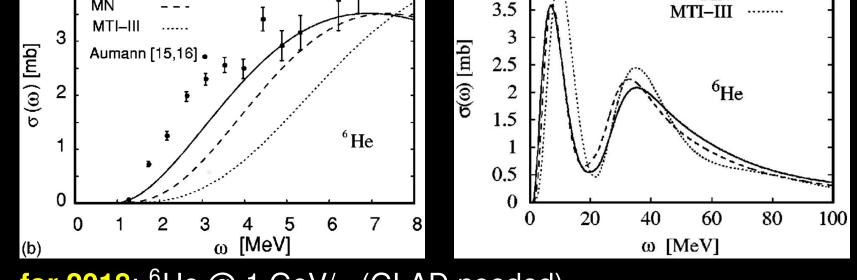

EM excitation EM excitation (2)

Requirements

Summary

• 50 MeV/u: $E_x < 5$ MeV

1 GeV/u: E_x < 40 MeV
 For instance: photo absorption cross section of ⁶He
 S. Bacca et al. PRL 89, 052502 (2002); PRC 69, 057001 (2004)



• 50 MeV/u: $E_x < 5$ MeV

TECHNISCHE UNIVERSITÄT DARMSTADT

EM excitation EM excitation (2)

<u>Requirements</u> Summary • 1 GeV/u: $E_x < 40$ MeV For instance: photo absorption cross section of ⁶He S. Bacca et al. PRL 89, 052502 (2002); PRC 69, 057001 (2004) 4 AV4' (AV4') (AV4') (BV4') (AV4') (BV4') (BV4')

for 2018: ⁶He @ 1 GeV/u (GLAD needed)

• 50 MeV/u: $E_x < 5$ MeV

TECHNISCHE UNIVERSITÄT DARMSTADT

EM excitation EM excitation (2) Requirements

Summary

• 1 GeV/*u*: $E_x < 40 \text{ MeV}$ For instance: photo absorption cross section of ⁶He S. Bacca et al. PRL 89, 052502 (2002); PRC 69, 057001 (2004) (b) AV4' AV4 MN 3.5 MTI-III MTI-III 3 <u></u> 5 (ໝ] [mb] Aumann [15,16] . 2.5 ⁶He 1.5 ⁶He 0.5 n 0 20 40 80 100 60 O 3 7 8 ω [MeV] ω [MeV] (b) for 2018: ⁶He @ 1 GeV/u (GLAD needed)

• 5 GeV/u: $E_x < 120 \text{ MeV} (\rightarrow \text{EXL in HESR})$

EM excitation	
EM excitation (2)	
Requirements	
Spill structure	
Ion Source	
Summary	
	Requirements
	nequirements

Pulsed Beam and Spill Structure (LEB, HEB)

TECHNISCHE UNIVERSITÄT DARMSTADT

EM excitation

EM excitation (2)

Requirements

Spill structure

Ion Source Summary

- slow extraction (looooong spill, no structure)
- (fast only if <1 particle /spill after (S)FRS)
- PID is measured for each particle before and after target
- $I_{beam} < 100 \text{ kHz}$
- always want 1-5 MHz pulsing \rightarrow mostly empty packets (after (S)FRS)
- regardless if problem with spill structure solved or not:

beam should always be pulsed

Ion Source

EM excitation EM excitation (2) Requirements Spill structure Ion Source

Summary

• for NUSTAR, the most important issue

• \sim 20 years ago: big problem with ⁴⁸Ca beam (10-20 PRL lost to MSU!!!)

Ion Source

EM excitation

EM excitation (2)

Requirements

Spill structure

Ion Source

Summary

• for NUSTAR, the most important issue

- \sim 20 years ago: big problem with $^{48}\mbox{Ca}$ beam (10-20 PRL lost to MSU!!!)
- Bi or Pb?
- can go a long way with U
- look at nuclear chart: isotopes sticking out: ⁴⁸Ca, ⁶⁴Ni, ⁸⁶Kr, ¹³⁶Xe, ... + proton-rich side
- think about isotopes, not elements (low abundance, cost of enriched material)
- efficiency of ion source+acc. chain,
- what we really need: PAC safe bet: C, O, ⁴⁸Ca, ²⁰⁸Pb, U

EM excitation EM excitation (2)	
Requirements	
Summary I	
Summary	
	Summary

Summary

EM excitation
EM excitation (2)
Requirements

Su	mn	nary	/

Summary

 slow extraction: always use 1–5 MHz pulsing (effect on beam intensity?)

- don't compromise at the ion source
- beams: C, O, ⁴⁸Ca, ²⁰⁸Pb, U intensity: maximum
- NUSTAR rather flexible in heavy region (south and east of Pb)
 - everything is new
 - if (initial) intensity not perfect, pick less exotic isotopes