

Status and Prospects of ESR and CRYRING

M. Steck Stored Beams Division

ESR Operation

Fast injection (stable ions / RIBs) Stochastic cooling (\geq 400 MeV/u) Electron cooling (3 - 430 MeV/u) Laser cooling (C³⁺ 120 MeV/u) Internal gas jet target Laser experiments Acceleration/deceleration (down to 3 MeV/u) Fast extraction (reinjection to SIS / HITRAP) Slow (resonant) extraction Ultraslow extraction (charge change) **Beam accumulation** Multi charge state/multi component operation Schottky mass spectrometry Isochronous mode (TOF detector)

All these modes work somehow, but all are far from perfect or routine.

Ion Optical Studies

Tune Measurements

motivation: long-standing (wrong quadrupole strength, since 1990) and unexplained beam loss (meanwhile solved)

HELMHOLTZ

GEMEINSCHAFT

FAIR

Ion Optical Studies Tune Response and Dispersion

Beta functions β_{x_i} , β_v Dispersion functions D_x,D_y 80 لىسسىل أحيسي المشيس 70 400 MeV/u 8 60 100 MeV/u Dispersion X [m] 4 MeV/u 50 calculated [ຍ] ⁵⁰ ຢູ່ ⁴⁰ vith MAD-X 6 30 20 10 20 40 60 80 100 80 20 40 60 100 Path length [m] Path length [m] 80 0,3 70 400 MeV/u 60 0.2 100 MeV/u 4 MeV/u 50 Dispersion Y [m] calculated 0,1 β_y [m] with MAD-X 40 0.0 30 20 -0,1 10 measured -0,2 0 calculated with MAD-X 20 40 60 80 100 -0.3 Path length [m] 20 60 80 100 40 0 A. Petrenko (BINP) Path length [m] **Tune response measurements** dispersion measurements beta function $\beta \simeq \frac{4\pi}{l} \frac{\partial \nu}{\partial K_1}$, $K_1 = \frac{1}{B\rho} \left| \frac{\partial B_y}{\partial x} \right|$ $D_x = \frac{\Delta x}{\Delta p/r}$ HELMHOLTZ

GEMEINSCHAFT

Slow (Resonant) Extraction from ESR

test with Ar¹⁸⁺ 100 MeV/u

Beam center was moving during extraction

ES

Successful proof of feasibility, but extraction of decelerated beams will require much more efforts

Slow Extraction by Charge Change

New Isochronous Mode for Mass Measurements with the ToF Detector

Old Mode

with large negative dispersion (-8 m) at TOF detector

measurement of transition energy by variation of beam energy

New mode makes use of the availability of ten individual quadrupole power converters (breaking the symmetry). First experiment showed dispersion of +13 m at the ToF detector

new calculations available further experiments needed

bring dispersion at TOF detector to zero
improve transmission from FRS to ESR

GEMEINSCHAFT

High Intensity Cooled Beams

high intensity attempts

transverse coherent Schottky signal 0-90 MHz

longitudinal Schottky signal with central coherent peak

observations and attempts to apply

feedback were not conclusive

December 2005

18 mA Xe⁵⁴⁺ 350 MeV/u bunched (h=2, B=0.40) corresponding to over 40 mA coasting beam

what matters?

cooling⇒ emittance, momentum spread orbit, tune, chromaticity, impedances

high intensity operation, particularly with cooled beams, is arts, not science; predictions for the future are doubtful

Longitudinal Accumulation with RF and Electron Cooling

moving barriers

three schemes were successfully tested:

moving barriers, fixed barrier, h=1 unstable fixed point

cooling times were close to expectations efficient accumulation

high quality timing and kicker pulses required Intensity limits: rf voltage and instabilities

M. Steck, HIC4FAIR Workshop Detectors & Accelerators, Hamburg, 28-31 July 2015

HELMHOLTZ

GEMEINSCHAFT

Barrier Bucket Accumulation

Accumulation with Barrier Bucket rf voltage

Precise synchronization and timing of three kicker modules

statistics from GO-experiment 10/2014 one miss in ten thousand shots

HELMHOLTZ

GEMEINSCHAFT

FAIR

Cooled Beam Quality from SIS

small transverse emittance

650 s

protons 400 MeV $\Delta p/p = 1.8 \times 10^{-3}$

SIS beam emittance

M. Steck, HIC4FAIR Workshop Detectors & Accelerators, Hamburg, 28-31 July 2015

 Xe^{54+} 50 MeV/u $\Delta p/p = 1.2 \times 10^{-3}$

20 s

Beam Cooling

stochastic pre-cooling on injection orbit energy <u>400</u> (-550) MeV/u bandwidth 0.8 GHz (range 0.9-17 GHz) $\delta p/p = \pm 0.35 \% \rightarrow \delta p/p = \pm 0.01 \%$ $\varepsilon = 10 \,\mu m \rightarrow \varepsilon = 2 \,\mu m$ combiner station FUERIL OUT signal lines electrodes kicker 10 m 250 combiner station 200 Subsequent Power [dB/Hz] 120 electron cooling 100 stochastic pre-cooling -0.25% -0.15% -0.05% 0.05% 0.15% 0.25% power amplifiers

electron cooling

energy	1.6 – 250 keV
current	0.001 – 1 A
diameter	50.8 mm
magnetic field	0.01 - 0.2 T
collection effici	ency 0.9998
transv. tempera	ture 0.1 eV
longitud. tempe	erature ~0.1 meV
vacuum	1 × 10 ⁻¹¹ mbar

Electron Cooled Beams in Equilibrium with Intrabeam Scattering (IBS)

Transverse Diagnostics

New Schottky Resonator

Old Schottky pickup Resonant circuit at 30th harmonic

Nd

142 59+

Pm

single ion detection (without cooling)

ideas for new resonant Schottky detectors, possibly with sensitivity to beam position

Stability of ESR Operation

Deceleration to 4 MeV/u

Low Energy Beams – Vacuum

measurement in 2014 of beam half life with an average pressure of $p \approx 1 \times 10^{-10}$ mbar

10⁷ Cu Z + rest gas: 10^{6} Kr Y(H2) = 90 % 10⁵ Y(N2) = 9.5 % Xe Y(Ar) = 0.5 % [S] 10 $P = 10^{-11} \text{ mba}$ 10^{3} 10^{2} 10¹ 10° 10 100 E [MeV/u]

LIFETIMES OF BARE NUCLEUS

V. Shevelko

simulation for CRYRING

and for some incompletely stripped ions

Properties of Decelerated Beams

Beam parameters due to equilibrium between IBS and electron cooling

Losses increase with

stored particle number

Fast Beam Extraction towards HITRAP

CRYRING @ MSL Stockholm

fast ramping (7 T/s)

powerful electron cooling

excellent vacuum 1×10⁻¹¹ mbar *H. Danared*

(MSL) 2006

CRYRING @ ESR

FAIR Research & Development

- Detectors and diagnostic systems
- FAIR type control system
- Training of operators on FAIR type system
- FAIR type safety and radiation monitoring/access system with real beam (standalone operation during commissioning)

Scientific Opportunities

- Heavy, highly-charged cooled ions as available at GSI (up to U⁹²⁺, fragmentation products) at low energy 100 keV/u .. 10 MeV/u
 - bridge the energy gap between the ESR (> 4 MeV/u) and HITRAP (< 10 keV/u)

Max. rigidity 1.44 Tm 15 MeV/u U⁹²⁺ 96 MeV (anti-)protons Min. rigidity ~ 0.054 Tm 21 keV/u U⁹²⁺ 150 keV (anti-)protons

CRYRING@ESR

arrival at GSI

Timeline CRYRING

• ring installation started, ion source and linac rf operation started

								2014													201											
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6		T	9	10	11	12		
Clearing Cave B																													\square			
Reconstruction of Cave																													\square			
Disassembly of CRYRING at MSL	-	+																														
Transport to GSI	-	-																														
Preparation of Components for reassembly																																
Reassembly in Cave B @ GSI																																
Fast beam ejection test at ESR																																
Commissioning with RFQ injector																																
First tests of FAIR Diag. & Controls																																
First Experiments																										\Box			\square			

- Continue Installation
- Finish cave infrastructure, connect power converters
- Control system and diagnostics on track
- Beam line ESR CRYRING prepared (missing dipole chamber)

