Beam Induced Activation and Collimation

Ivan Strašík

Beam Physics Department, Primary Beams, FAIR@GSI

HIC4FAIR Workshop Detectors & Accelerators, Hamburg, 2015

Overview

- > Beam halo and regular beam losses
- > Experimental studies and simulation of the residual activity
- > Beam loss criteria for heavy ions and protons
- ➤ Halo collimation of fully stripped ions and protons in SIS100
- ➤ Halo collimation of partially stripped ions in SIS100
- > Beam collimation in transfer lines

Beam halo & regular beam losses

- ▶ Beam dynamics processes and machine errors → beam halo formation
 - General definition of the beam halo difficult due to variety of machines and beams
 - Description low density, large amplitudes of the betatron oscillations, diffusion speed
 [Ref] K. Wittenburg, CERN Accelerator School: Course on Beam Diagnostics, 557 (2008).

Diffusion speed can be very low: < 1 µm/turn (in synchrotrons)

[Ref] G. Valentino, Phys. Rev. ST AB 16, 021003 (2013)

[Ref] I. Hofmann, Phys. Rev. ST AB 16, 084201 (2013)

ightharpoonup Beam halo ightharpoonup uncontrolled regular beam losses (usually a few % of the beam)

Beam losses & residual activation

- Consequences of the beam halo and uncontrolled beam losses
 - Residual activity induced in the accelerator structure
 - Radiation damage of the accelerator components
 - Vacuum degradation due to desorption process
 - Quench of the superconducting magnet

Residual activation

- Production of radioactive nuclei in construction materials of an accelerator
- Important for "hands-on maintenance" (people who do installation or repair work)

Residual activation process

Mechanism of the residual activation.

- Activation process nuclear reactions
 - Spallation reactions
 - Radiative capture of low energy neutrons
 - Photonuclear reactions

Radionuclides detected in the accelerator construction materials

Material	Radionuclides	Half-life
Carbon, plastic	⁷ Be	53.1 days
·	¹¹ C	20.4 minutes
Aluminum	Above plus:	
	²² Na	2.6 years
	²⁴ Na	15.0 hours
Stainless steel	Above plus:	
	⁴³ K	22.3 hours
	⁴⁶ Sc	83.8 days
	⁴⁸ V	16.0 days
	⁵¹ Cr	27.7 days
	⁵² Mn	5.6 days
	⁵⁴ Mn	312.3 days
	⁵⁶ Co	77.3 days
	⁵⁷ Co	271.8 days
	⁵⁸ Co	70.9 days
	⁵⁹ Fe	44.5 days
	⁶⁰ Co	5.3 years
Copper	Above plus:	
	⁶⁴ Cu	12.7 hours
	⁶⁵ Zn	244.3 days

Experimental studies of the residual activity @ GSI

- Irradiation of various materials using SIS18 heavy ion beams
- Compound targets for depth profiling of the residual activity
- Measurement of the activated samples using HPGe detector
- Gamma-spectroscopy analysis of the samples

Year	Beam	Beam energy [MeV/u]	Target
2005 - 2006	238U	950, 500	copper, stainless steel
2008	238U	1000	stainless steel
2009	⁴⁰ Ar	1000, 500	copper, alluminium
2010	²³⁸ U, ¹⁴ N	950, 500	alluminium, lead
2011 - 2012	²³⁸ U, ¹⁸¹ Ta	500, 100	graphite, carbon-composite
2014	238U	950, 200	tungsten, copper, aluminium

Radioactive isotopes induced by ²³⁸U ions

Depth profile of ⁵⁶Co (T_{1/2} = 77 d) target-nuclei fragment copper irradiated by 950 MeV/u ²³⁸U ions

Depth profile of ¹³¹I (T_{1/2} = 8 d) primary ion fragment copper irradiated by 950 MeV/u ²³⁸U ions

Validation of the simulation codes (FLUKA)

> FLUKA – Monte Carlo code for the simulation of particle transport in matter

Irradiation conditions

Target material: stainless steel

Beam: 238U

Beam energy: 950 MeV/u

Residual activity of the isotopes

Depth profiles

Tolerable beam losses of the proton beam

"uncontrolled beam losses of 1 W/m should be a reasonable limit for hands-on maintenance" [Ref] N.V. Mokhov and W. Chou, The 7th ICFA Mini-workshop on High Intensity High Brightness Hadron Beams, USA, 1999.

- ➤ 1 W/m \rightarrow 6.2×10⁹ protons/(m·s) of energy 1 GeV (uniformly distributed)
- Simulation of the steel beam pipe residual activity induced by beam losses of 1 W/m

Simulation tool: FLUKA

Irradiation time: 100 days

Cooling time: 4 hours

Effective dose rate at 30 cm is about 1 mSv/h

Natural background radiation (annual dose)	2 mSv
Medical radiation sources (e.g. CT scan)	10 - 20 mSv
Limit for radiation workers (annual dose)	20 mSv

Beam loss criteria for heavy ions

- Simulation performed by using FLUKA
- Beam loss criteria: A_p/A_i
 A_p activity induced by 1 W/m of protons
 A_i activity induced by 1 W/m of ions

Primary ions (E = 1 GeV/u)	Equivalent to 1 W/m [ions/(m·s)]
¹ H	6.2×10 ⁹
⁴ He	1.6×10 ⁹
¹² C	5.2×10 ⁸
²⁰ Ne	3.1×10 ⁸
⁴⁰ Ar	1.6×10 ⁸
⁸⁴ Kr	7.4×10 ⁷
¹³² Xe	4.7×10 ⁷
¹⁹⁷ A u	3.2×10 ⁷
238U	2.6×10 ⁷

Halo collimation in high energy accelerators

- Collimation system devices which intercept halo particles (future lost particles)
- Provides well defined and shielded storing location for the beam losses
- > Residual activity is much higher (hot spot) compared to other components
- > Collimation system design two simulation tools of different types are needed
 - Particle interaction with the collimator material (e.g. FLUKA)
 - Particle tracking through the accelerator lattice (e.g. MAD-X)
- Simple idea of the halo collimation
 - Naively, the particles are stopped in the collimator.
 - In reality, due to small impact parameter are the particles scattered out of the collimator!

Impact parameter is usually very small: nm - µm

[Ref] G. Valentino, Phys. Rev. ST AB 16 (2013)

Two stage betatron collimation system

- > Two stage collimation system consist of:
 - Primary collimator (thin foil) scattering of the halo particles
 - Secondary collimators (bulky blocks) absorption of the scattered particles

Very robust concept and well established in many accelerators.

[Ref] J.B. Jeanneret, Phys. Rev. ST AB 1 (1998)

Phase space plots

1. secondary collimator

primary collimator

2. secondary collimator

Collimation system for protons in SIS100

Location in SIS100: Sector 1, straight section

Simulation of the proton beam collimation in SIS100 using FLUKA and MAD-X codes

Efficiency of the proton collimation in SIS100

Beam-material interaction: FLUKA

Particle tracking in the SIS100 lattice: MAD-X

Statistics: 100 000 particles

Collimation efficiency: ~ 99 %

Collimation of fully stripped ions in SIS100

Proton collimation system in SIS100 is used also for the fully stripped ions

Beam-material interaction: FLUKA

Particle tracking in the SIS100 lattice: MAD-X

Dartiala tracking in the SIS100 lettice: MAD V

Statistics: 100 000 particles

Collimation efficiency for the fully stripped ions

Beam-material interaction: FLUKA

Statistics: 100 000 particles

Particle tracking in the SIS100 lattice: MAD-X

Tolerable beam losses in SIS100

• SIS100 beam parameters and equivalent to 1 W/m (number of particles)

Beam	Injection energy	Extraction energy	1 W/m equivalent (injection)	1 W/m equivalent (extraction)	Beam intensity
Protons	4 GeV	29 GeV	1.5×10 ⁹	2.1×10 ⁸	2×10 ¹³
⁴⁰ Ar ¹⁸⁺ ions	1.6 GeV/u	12 GeV/u	1×10 ⁸	1.3×10 ⁷	1×10 ¹¹
²³⁸ U ⁹²⁺ ions	1.3 GeV/u	10 GeV/u	2×10 ⁷	2.5×10 ⁶	1.5×10 ¹⁰

• From the beam loss maps tolerable beam losses (% of the beam) can be identified.

Beam	Loss criteria (injection)	Loss criteria (extraction)	Tolerable losses (injection)	Tolerable losses (extraction)
Protons	1 W/m	1 W/m	10 %	5 %
⁴⁰ Ar ¹⁸⁺ ions	2 W/m	1 W/m	30 %	6 %
²³⁸ U ⁹²⁺ ions	4 W/m	2 W/m	20 %	10 %

Collimation of partially stripped ions in SIS 100

Intermediate charge state ions will be accelerated in SIS 100.

$$^{238}_{92}U^{28+}, \ ^{197}_{79}Au^{25+}, \ ^{181}_{73}Ta^{24+}, \ ^{132}_{54}Xe^{22+}, \ ^{84}_{36}Kr^{17+}, \ ^{20}_{10}Ne^{5+}$$

- Collimation concept for the partially stripped ions:
 - Stripping foil: $^{238}_{92}$ $^{28+}_{92}$ $\rightarrow ^{238}_{92}$ $^{92+}_{92}$
 - Deflection by a beam optical element
- Collimation of the partially stripped ions in SIS100

Slow extraction area in SIS 100

Charge state distribution after stripping

Electron capture and electron loss Equilibrium charge-state distribution code GLOBAL [Ref] C. Scheidenberger et al., NIMB 142 (1998) 441.

Medium-Z materials (Al – Cu) \rightarrow optimal for efficient stripping for wide range of projectiles and beam energies

Stripping foil: 500 µm thick, titanium

Particle tracking of stripped ions

Orange tracks

$$^{238}_{92}$$
 $^{28+}_{92}$ \rightarrow $^{238}_{92}$ $^{92+}_{92}$

Green tracks

$$^{20}_{10}\text{Ne}^{5+}$$
 \rightarrow $^{20}_{10}\text{Ne}^{10+}$

Collimation in the beam transfer lines

Halo collimation or cut the tails?

- Beam halo unstable particles with diffusion speed assumed to be lost
- Beam tails part of the beam distribution larger than certain n×σ

Collimation in the beam transfer lines

- Prevent background in experiments
- Single pass process
- Using of thick absorbers (two stage system is not useful)
- Different beam size → variable aperture of the collimators (stepping motors)

Outline of the collimation in the transfer lines

2 collimators at 1 position (phase advance between the collimator and detector is crucial)

4 collimators at 2 positions (phase advance between the positions is 90°)

8 collimators at 4 positions (phase advance between the positions is 45°)

Summary

Residual activation in heavy ion accelerators

- Experimental studies of the residual activity induced by heavy ions performed at GSI
- Simulation of the residual activity validation of the simulation codes (FLUKA)
- Beam loss criteria for heavy ion beams are less strict (in W/m) than for protons

Halo collimation in heavy ion accelerators

- Halo collimation of fully stripped ions and protons
- Halo collimation of partially stripped
- Collimation efficiency in SIS100 can be 99 % in the most of the cases

Detailed information

- Residual activation in heavy ion accelerators
 - [Ref] I. Strašík, E. Mustafin, and M. Pavlovič, Phys. Rev. ST AB 13 (2010)
- Beam halo collimation in heavy ion accelerators
 - [Ref] I. Strašík, I. Prokhorov, and O. Boine-Frankenheim, Phys. Rev. ST AB 18 (2015)

