Overview of

H4F Workshop Accelerators & Experiments, July 29, 2014 Lars Schmitt, FAIR Darmstadt

Antiprotons at FAIR

PANDA Overview

PANDA Systems

TDR Schedule and Conclusions

Antiprotons at FAIR

Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA at < 2x10³² cm⁻²s⁻¹

Modularised Start Version

- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity: 10³¹ cm⁻²s⁻¹

Antiprotons at FAIR

Antiprotons are unique:

- New dimension at FAIR wrt GSI
- Hadron physics bridges nuclear and HI physics to basic QCD
- No other p facility worldwide
- Successful predecessors have demonstrated the large potential

Unique precision at HESR:

- Beam cooling
 - → ΔE ~ 50 keV
 - \rightarrow Tune E_{CM} to scan
- Annihilation at threshold

High Energy Storage Ring

HESR Parameters

- Storage ring for internal target
- Initially also_used for accumulation
- Injection of p at 3.7 GeV/c
- Slow synchrotron (1.5-15 GeV/c)
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹

Mode	High luminosity (HL)	High resolution (HR)
∆p/p	~10-4	~4x10⁻⁵
L (cm ⁻² s ⁻¹)	2x10 ³²	2x10 ³¹
Stored p	10 ¹¹	10 ¹⁰

- Stochastic & electron cooling
- Resolution ~50 keV
- Tune E_{CM} to probe resonance
- Get precise m and Γ

L. Schmitt, Overview of PANDA

PANDA Overview

L. Schmitt, Overview of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons
 → Understand new XYZ states, D_s(2317) and others

Strange hadrons: hyperon polarisation, spectroscopy **Exotic QCD States**: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons:**

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons
→ Understand new XYZ states, D_s(2317) and others

Strange hadrons: hyperon polarisation, spectroscopy **Exotic QCD States**: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons:**

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure Time-like Nucleon Formfactors

Measurable in annihilation, discrepancy with space-like
 Generalized Parton Distributions
 Drell-Yan Process

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons→ Understand new XYZ states, D_s(2317) and others

Strange hadrons: hyperon polarisation, spectroscopy **Exotic QCD States**: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons:**

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure

Time-like Nucleon Formfactors

Measurable in annihilation, discrepancy with space-like Generalized Parton Distributions Drell-Yan Process

Nuclear Physics *Hypernuclei:* Production of double Λ-hypernuclei → γ-spectroscopy of hypernuclei, YY interaction *Hadrons in Nuclear Medium*

L. Schmitt, Overview of PANDA

L. Schmitt, Overview of PANDA

L. Schmitt, Overview of PANDA

The PANDA Hall

- Architects approaching execution planning
- Detailed layout of infrastructure, shielding, services
- Next steps: routing of cables and supplies

PANDA Construction Schedule

Subsystem		2015		2016			2017				2018				2019				2020					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Dipole							0	M7/8																
Forward TOF						M4/7																		
Forward Shashlyk Calorimeter							M7/8																	
Forward Range System						0																		
Luminosity Detector																								
Supports																								
Supplies																								
Controls									0															
Computing																								
DAQ					0					0														
Solenoid					O Con	ductor p	oductio	n <mark>O</mark> Cor	ductor	product	on <mark>O</mark> C	onducto	M8/9											
Cluster Jet Target				0																				
TS Barrel Muon Detectors						0																		
TS Endcap Muon Detectors						0																		
Muon Filter						0																		
Forward Tracking							M4/7																	
Barrel EMC						0	Crystal	produc	on															
Pellet Target									0		M8/10													
Barrel DIRC							M3/7/8																	
Barrel Time of Flight (TOF)										0														
Interaction Region																								
Micro Vertex Detector (MVD)									M4/8															
Straw Tube Tracker (STT)		0																						
Backward Endcap EMC	M3/7	0																						
Planar GEM Trackers										0														
Forward Endcap EMC	M3/8							M9/10																
Endcap Disc DIRC				0										0										
Hypernuclei Primary Target									0															
Hypernuclei Germanium Detector									0															
Hypernuclei Secondary Active Target												0												
Silicon Lambda Disks																								
Forward RICH																								

R&D, M3: TDR approved

Tendering, Contract Preparation, M4: Contracts signed

Construction design, M7: Planning completed

Prototype/Pre-series construction, M8: Prototype/Pre-series testing complete, production readiness

Component construction & testing, Module assembly & testing, M9: Acceptance test completed

Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, M10: Ready for installation

Funding Milestone

Subject to change due to funding

PANDA Installation Schedule

Subsystem		20	XX		20XX+1					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
Dipole										
Forward TOF										
Forward Shashlyk Calorimeter										
Forward Range System										
Luminosity Detector										
Supports										
Supplies										
Controls										
Computing										
DAQ										
Solenoid										
Cluster Jet Target										
TS Barrel Muon Detectors										
TS Endcap Muon Detectors										
Muon Filter										
Forward Tracking										
Barrel EMC										
Pellet Target										
Barrel DIRC										
Barrel Time of Flight (TOF)										
Interaction Region										
Micro Vertex Detector (MVD)										
Straw Tube Tracker (STT)										
Backward Endcap EMC										
Planar GEM Trackers										
Forward Endcap EMC										
Endcap Disc DIRC										
Hypernuclei Primary Target										
Hypernuclei Germanium Detector										
Hypernuclei Secondary Active Target										
Silicon Lambda Disks										
Forward RICH										

Pre-assembly, off-site testing, Transport to FAIR, site-acceptance tests, **M10:** Approval for installation Installation at FAIR, commissioning without beam, **M11:** Ready for beam Commissioning with beam, **M12:** Ready for operations

Magnet field mapping

Assumptions:

- CC delayed
- Start of installation once hall available
- Dipole first: HESR
- TS and FS separate
- FS: from upstream towards downstream
- TS sequence:
 - Solenoid
 - Barrel EMC
 - Inner systems
 - Endcap

PANDA Systems

L. Schmitt, Overview of PANDA

Approved Systems

Magnets

Solenoid Magnet

- Super conducting coil
- 2 T central field
- Segmented coil for target
- Instrumented iron yoke
- Doors for installation and maintenance

🛛 Status:

- Cooperation with CERN for cold mass
- Conductor optimized, close to tender
- Yoke design complete
- Time critical !

Dipole Magnet

- Normal conducting racetrack design
- Dipole also bends the beam
- Segmented yoke for ramping

L. Schmitt, Overview of PANDA

PANDA Target

Luminosity Considerations

- Goal: 2x10³² cm⁻²s⁻¹ (HL mode)
- With 10¹¹ stored p and 50 mb: 4x10¹⁵ cm⁻² target density

Cluster Jet Target

- Continuous development
 - Nozzle improvement
 - Better alignment by tilt device
 - Record 2x10¹⁵ cm⁻² reached
- TDR approved

Pellet Target

- >4x10¹⁵ cm⁻² feasible
- Prototype under way
- Pellet tracking prototype
- Second TDR part 2015/16

Latest version of the cluster jet target

Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Outer layers: double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

Challenges

- Low mass supports
- Cooling in a small volume
- Radiation tolerance

Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Outer layers: double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

Challenges

- Low mass supports
- Cooling in a small volume
- Radiation tolerance

- ToPiX full version in 2015
- PASTA ASIC in 2015
- Detailed service planning

Straw Tube Tracker

Detector Layout

- 4600 straws in 21-27 layers, of which 8 layers skewed at ~3°
- Tube made of 27 μm thin Al-mylar, Ø=1cm
- R_{in}= 150 mm, R_{out}= 420 mm, I=1500 mm
- Self-supporting straw double layers at ~1 bar overpressure (Ar/CO₂)
- Readout with ASIC+TDC or FADC

Material Budget

- \varTheta Max. 26 layers,
- 0.05 % X/X₀ per layer
- Total 1.3% X/X₀

Project Status

- Prototype construction & beam tests
- Aging tests: up to 1.2 C/cm²
- Straw series production started

Straw Tube Tracker Developments

Mechanics status

- Prototype frame installed
- Assembly scheme
- Frontend layout CAD

Electronics Status

- New PASSTREC ASIC available
- New 125 MSPS FADC, no FEE at detector side

Testbeam campaign

- December '14 and May '15:
 5 energies between 0.6 and 3.0 GeV
- Both types of electronics:
 PASTTREC ASIC + TRB3 TDC
 FADC (240 MHz & 125 MHz)
- Goal of further testbeams:
 Fully characterise readout
- Final selection: cost/performance

FAIR ECE, July 23, 2015

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals 54%

Large Area APDs

Barrel Calorimeter Forward Endcap 11000 PWO Crystals 4000 PWO crystals LAAPD readout, 2x1cm² • High occupancy in center σ(E)/E~1.5%/√E + const. LA APD and VPTT Backward Endcap for hermeticity, 530 PWO crystals

L. Schmitt, Overview of PANDA

Electromagnetic Calorimeters

PWO Crystal Production

- 2 new producers: SICCAS & Crytur
- First good samples received
- 54% of crystals produced
- Eol to fund remaining crystals

APD Screening

- Screening of 30000 APDs at GSI
- Facility started shift operation

Backward Endcap

- Prototyping advanced
- Mech design being finalised

Forward Endcap

- Support frame done
- Module production commencing

Barrel EMC

Barrel prototype tests

- Mechanics design being finalised, 65% of alveoles produced
- APD readout ASIC characterisation at testbeam successful
- ASICs being ordered
- Final layout of auxiliary electronics: flex PCB, backplane, shielding
- Tests with depolished crystals to improve homogeneity

Muon Detector System

Muon system rationale:

- Low momenta, high BG of pions
- Multi-layer range system

Muon system layout:

- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Fw Range System: 16+2 layers
- Detectors: Drift tubes with wire & cathode strip readout

System status

- TDR approved Sep 2014
- Range system tests at CERN

Imminent TDRs: 2015

Forward Shashlyk Calorimeter

27x14 modules

54x28 cells

Forward electromagnetic calorimeter:

- Interleaved scintillator and absorber
- WLS fibres for light collection
- PMTs for photon readout
- FADCs for digitization
- Active area size 297x154 cm²

System status:

- Module design 2x2 cells of 5.5x5.5 cm² verified
- Tests with electrons and tagged photons:
- Energy resolution:

 $\sigma_{_{\rm E}}$ /E = 5.6/E \oplus 2.4/ \sqrt{E} [GeV] \oplus 1.3 [%] (1-19 GeV e-)

 $\sigma_{_{\rm E}}$ /E = 3.7/ \sqrt{E} [GeV] \oplus 4.3 [%] (50-400 MeV ph)

- Time resolution: 100 ps/√E [GeV]
- Internal review: recommends production readiness prototype, now planned for 2016
- TDR submitted to FAIR June 17, 2015

Luminosity Detector

Elastic scattering:

- Coulomb part calculable
- Scattering of p at low t
- Precision tracking of scattered p
- Acceptance 3-8 mrad

Detector layout:

- Roman pot system at z=11 m
- Silicon pixel detector:
 - 4 layers of HV MAPS (50 µm thick)
 - pixels 80x80 µm²
- CVD diamond supports (200 μm)
- Retractable half planes in secondary vacuum

Luminosity Detector

HV MAPS:

- Development at U Heidelberg for Mu3e Experiment at PSI
- Active pixel sensor in HV CMOS: faster and more rad. hard
- Digital processing on chip
- Testbeam results: S/N ~ 20, Efficiency ~99.5%

Project status:

- Cooling system prototype tested
- Mechanical vessel and vacuum system prototype tested
- CVD diamond supports available
- TDR was reviewed internally with external experts
- Recommendations: implement more testbeam results, further simulations, material tests

L. Schmitt, Status of PANDA

Forward Tracking

Tracking in Forward Spectrometer

- 3 stations with 2 chambers each
 - FT1&2 : between solenoid and dipole
 - FT3&4 : in the dipole gap
 - FT5&6 : large chambers behind dipole
- Straw tubes arranged in double layers
 - 27 μm thin mylar tubes, 1 cm Ø
 - Stability by 1 bar overpressure
- 3 projections per chamber (0°, ±5°)

Present status

- Optimisation of setup: FT6 before RICH
- Final simulation ongoing
- Testbeam at COSY, PASTTREC readout

Modular layout of straws

FAIR ECE, July 23, 2015

Forward Time of Flight

Forward Spectrometer PID

- Time-of-Flight essential
- No start detector
- Relative timing to Barrel

Detector layout:

- Scintillator wall at z=7.5m made of 140 cm long slabs
- Bicron 408 scintillator
- PMT readout on both ends
- 10 cm slabs on the sides,
 5 cm slabs in the center
- TDC readout
- Additionally: Side walls inside dipole for low momentum tracks

Further Systems: 2016+

Forward GEM Tracker

Forward Tracking inside Solenoid

- 3-4 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- ➔ Approx. 35000 channels total
- Challenge to minimize material

L. Schmitt, Overview of PANDA

Forward GEM Tracker

Forward Tracking inside Solenoid

- 3-4 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- Approx. 35000 channels total
- Challenge to minimize material

L. Schmitt, Overview of PANDA

PANDA Barrel DIRC

Baseline design

- **DIRC: Detection of Internally Reflected** Cherenkov light pioneered by BaBar
- Cherenkov detector with SiO₂ radiator
- Detected patterns give β of particles

Optimization and challenges

- Focusing by lenses/mirrors
- More compact design
- Magnetic field \rightarrow MCP PMT
- Fast readout to suppress BG
- Plates as more economic radiator

Project status

- Baseline design verified
- Qualification of final design in 2015

PANDA Barrel DIRC: Recent Results

Testbeam campaign at CERN T9

- 2 periods: 3+2 weeks May-July
- ToF reference at multi-hadron beam
- Readout with TRB3/PADIWA

Measurement program

- Focusing by various lenses
- Prism as expansion volume
- Bars as baseline radiator
- Plate radiator as alternative

Outlook

- Data analysis ongoing
- Results for design choice until end 2015
- TDR draft end 2015

FAIR ECE, July 23, 2015

PANDA Barrel DIRC: Recent Results

Testbeam campaign at CERN T9

- 2 periods: 3+2 weeks May-July
- ToF reference at multi-hadron beam
- Readout with TRB3/PADIWA

Measurement program

- Focusing by various lenses
- Prism as expansion volume
- Bars as baseline radiator
- Plate radiator as alternative

Outlook

- Data analysis ongoing
- Results for design choice until end 2015
- TDR draft end 2015

PANDA Disc DIRC

Novel concept for forward PID

- Based on DIRC principle
- Disc shaped radiator
- Readout at the disc rim

Project status:

- Advanced design, first tests
- Review with external experts
- Next: full quarter disc prototype

Scintillator Tile Hodoscope

Detector for ToF and event timing

- Scintillator tiles 3x3x0.5 cm³
 - ➔ BC404, BC408 or BC420
 - Space points with precision timing
 - ➔ Lowest possible material budget
- Photon readout with 2 SiPMs (3x3 mm²)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
 - High intrinsic noise
 - Temperature dependence
- Goal for time resolution: 100 ps
- ASIC for SiPM readout

L. Schmitt, Overview of PANDA

Hypernuclear Setup

Principle:

Produce hypernuclei from captured Ξ

Modified Setup:

- Primary retractable wire/foil target
- Secondary active target to capture Ξ and track products with Si strips
- HP Ge detector for γ-spectroscopy

Primary Target:

- Diamond wire
- Piezo motored wire holder

Active Secondary Target:

L. Schmitt, Overview of PANDA

PANDA Data Acquisition

Data logging after online reconstruction

Programmable Physics Machine

DAQ chain tested with time distribution system, frontend and concentrator

PANDA TDR Schedule

Submission 2015:

- Forward Shashlyk: June 17
- Q4: Luminosity Detector
- Q4: Forward Time of Flight
- Q4: Forward Tracking
- Q4: Pellet Target Addendum

Submission early 2016:

- GEM Tracker
- Detector Controls

Submission 2016/17:

- Barrel DIRC
- Hypernuclear Setup
- SciTil / Barrel ToF
- DAQ and Computing
- Disc DIRC

System	Submission <i>Expected</i>	M3 (Approval) Expected
Target Spectrometer EMC	a-nEn -	08/08/2008
Barrel EMC	A DESCRIPTION OF THE OWNER	08/08/2008
Backward Endcap EMC	a state and a	08/08/2008
Forward Endcap EMC		08/08/2008
Solenoid		05/21/2009
Dipole		05/21/2009
Micro Vertex Detector (MVD)		02/26/2013
Straw Tube Tracker (STT)		01/29/2013
Cluster Jet Target		08/28/2013
Muon System		09/22/2014
Forward Shashlyk Calorimeter	17/6/2015	12/2015
Luminosity Detector	10/2015	3/2016
Forward TOF	12/2015	6/2016
Forward Tracking	12/2015	6/2016
Barrel DIRC	6/2016	12/2016
Hypernuclear Setup	3/2016	09/2016
Pellet Target	6/2016	12/2016
Controls	6/2016	12/2016
Planar GEM Trackers	9/2016	3/2017
Barrel Time of Flight (TOF)	9/2016	3/2017
DAQ	9/2016	3/2017
Computing	9/2016	3/2017
Endcap Disc DIRC	6/2017	12/2017
Silicon Lambda Disks	tba	tba
Forward RICH	tba	tba

For the items "Interaction Region", "Supports" and "Supplies" no TDRs are planned, only specification documents.

pand

FAIR ECE, July 23, 2015

PANDA TDR Schedule

System

Target Spectrometer EMC

Backward Endcap EK

Forward Endcap EMC

Micro Vertex Detector (MVD)

Straw Tube Tracker (STT)

Barrel EMC

Solenoid

Dipole

*)

Submission 2015:

- Forward Shashlyk: June 17
- Q4: Luminosity Detector
- Q4: Forward Time of Flight
- Q4: Forward Tracking
- Q4: Pellet Target Addendum

Submission early 2016:

- GEM Tracker
- Detector Controls

Submission 2016/17:

- Barrel DIRC
- Hypernuclear Setup
- SciTil / Barrel ToF
- DAQ and Computing
- Disc DIRC

Cluster Jet Target		08/28/2013
Muon System		V22/2014
Forward Shashlyk Calorimeter	17/6/2015	% % 15
Luminosity Detector	10/2015	-Le
Forward TOF	12/2015	
Forward Tracking	12/2015	6/201 0
Barrel DIRC	6/2016	12/2016
Hypernuclear Setup	3/2016	09/2016
Pellet Target	6/2016	12/2016
Controls	6/2016	12/2016
Planar GEM Trackers	9/2016	3/2017
Barrel Time of Flight (TOF)	9/2016	3/2017
DAQ	9/2016	3/2017
Computing	9/2016	3/2017
Endcap Disc DIRC	6/2017	12/2017
Silicon Lambda Disks	tba	tba
Forward RICH	tba	tba
tba:to be announced		Status 11/7/2015
For the items "Interaction Region" TDRs are planned, only specifica	", "Supports" and tion documents.	"Supplies" no
FAIR ECE, July 23, 2	2015	

Submission

Expected

Approved.

M3 (Approval)

Expected

08/08/2008

08/08/2008

08/08/2008

08/08/2008

05/21/2009

05/21/2009

02/26/2013

01/29/2013

Dund

PANDA

Summary

Present Status of PANDA

- Several systems head for TDR submission
- Preparation for Construction MoU
- Physics and detector topics

Timeline of PANDA

- Most TDRs to complete by end 2016
- Start of construction in 2014 for some systems
- Start of possible preassembly at Jülich in 2015
- Ready for mounting at FAIR by 2019

PANDA & FAIR start in hadron physics from 2022

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles
- Beyond PANDA further plans for spin physics at FAIR exist

The PANDA Collaboration

More than 520 physicists from 67 institutions in 18 countries

Aligarh Muslim University U Basel **IHEP Beijing U** Bochum Magadh U, Bodh Gaya BARC Mumbai **IIT Bombay** U Bonn **IFIN-HH Bucharest** U & INFN Brescia U & INFN Catania NIT, Chandigarh AGH UST Cracow JU Cracow U Cracow **IFJ PAN Cracow GSI** Darmstadt

Karnatak U, Dharwad TU Dresden JINR Dubna U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara FIAS Frankfurt **LNF-INFN** Frascati U & INFN Genova **U** Glasgow U Gießen Birla IT&S, Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati IIT Guwahati

IIT Indore Jülich CHP Saha INP. Kolkata **U** Katowice IMP Lanzhou **INFN** Legnaro **U** Lund U Mainz U Minsk **ITEP Moscow MPEI Moscow** U Münster **BINP Novosibirsk IPN** Orsay U & INFN Pavia **IHEP** Protvino **PNPI** Gatchina

U of Sidney U of Silesia **U** Stockholm **KTH Stockholm** Suranree University South Gujarat U, Surat U & INFN Torino Politechnico di Torino U & INFN Trieste U Tübingen **TSL** Uppsala **U** Uppsala **U** Valencia SMI Vienna **SINS Warsaw TU Warsaw**

