
Atomic Physics, Plasma Physics, and Applied Science

APPA@FAIR

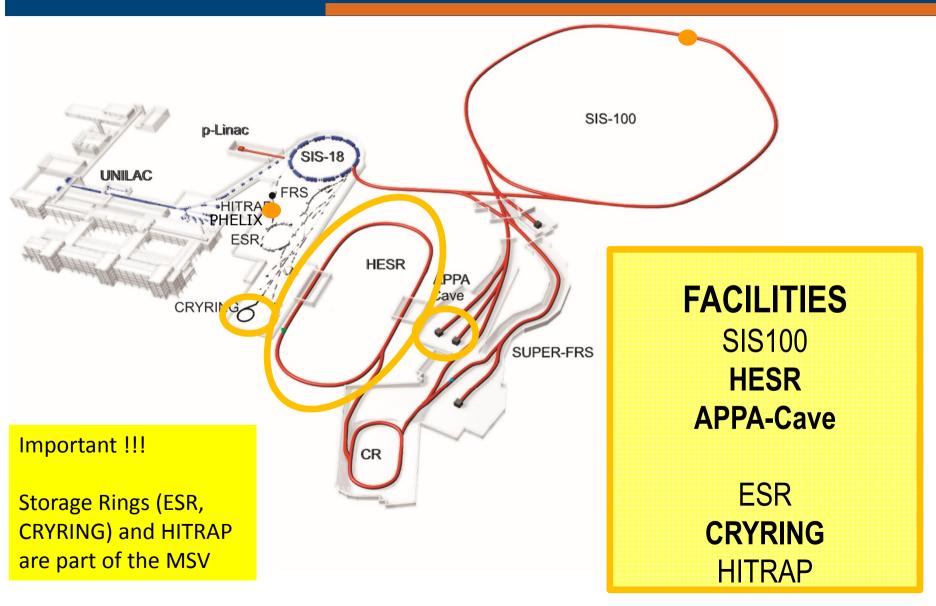
Instrumentation and Basic Requirements

Thomas Stöhlker
GSI, Helmholtz Institute Jena,& Friedrich Schiller University, Jena

Atomic Physics, Plasma Physics, and Applied Sciences

Introduction & The FAIR Facilities of APPA

- Modularized Start Version
- The APPA Cave (MSV)
- The Storage Ring Facilities (MSV)


Instrumentation, Detectors and Beam Parameters (MSV)

Midterm Research Program at GSI (2015 and beyond)

Conclusion

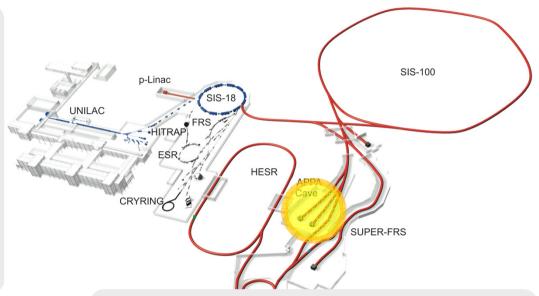
FAIR-MSV: APPA Facilities

Experiments from all APPA collaborations are located in the APPA cave

Plasma Physics

Proton Radiography
Warm Dense Matter

Biophysics


Effects of Cosmic Radiation

Materials Science

Radiation Effects at Extreme T,p
Radiation Hardness, Phase Transitions

Atomic Physics

Interaction of Highly-Charged Ions with Crystals

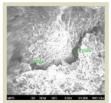
Beam parameters

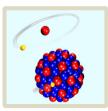
Plasma Physics:

Heavy ions, e.g. U^{28+} : up to 2 GeV/u, $5 \cdot 10^{11}$ ions Protons: 5 - 10 GeV, $2 \cdot 10^{13}$ protons

Atomic Physics

few-electron heavy ions:


up to 10 GeV/u, $I < 10^8$ pps


BioMat

p to U: up to 10 GeV/u up to 10^8 ions / $5 \cdot 10^{10}$ protons

FAIR-MSV: APPA Cave

protons (10 GeV): 2 x 10¹³ p/bunch **U**²⁸⁺ (2 GeV/u): 5 x 10¹¹ ions/bunch **U**⁹²⁺ (10 GeV/u): 10⁸ ions/s

user facility

several target stations

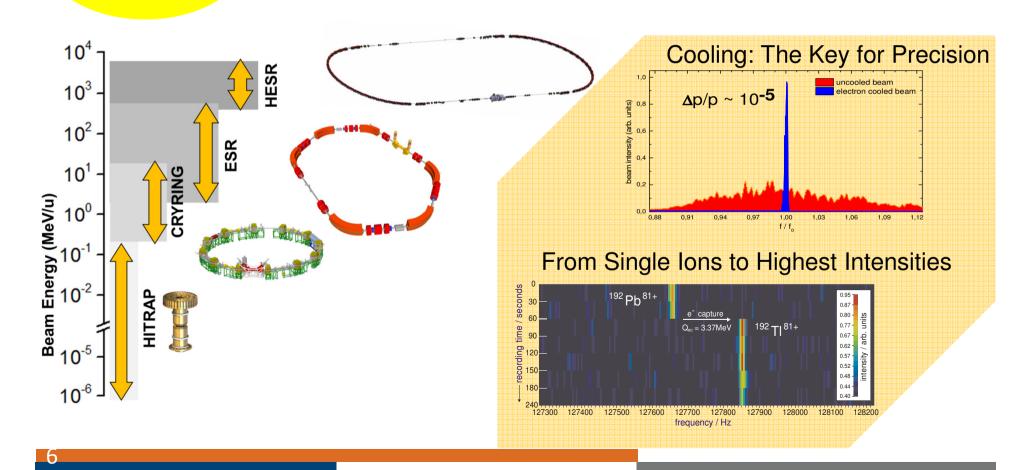
• flexible detector settings

• flexible beam shaping

external drivers

SPARC/BioMat beamline

HEDgeHOB/WDM beamline


EN EN EN EPOL

Ion Beam Facilities / Trapping & Storage

Worldwide Unique

Stored and Cooled

Highly-Charged Ions (e.g. U⁹²⁺) and Exotic Nuclei From Rest to Relativistic Energies (up to 4.9 GeV/u)

CRYRING at ESR: Status June 2015

Scientific goal:

- atomic and nuclear physics of exotic systems allow energy
- ion-surface interactions in the large perturbation regime

- circumference: 56 m
- decelerate ions down to 7‰ c
- UHV: p < 10⁻¹¹ mbar
- gas and electron targets
- e-cooler
- several experiment stations

first beam in ring expected in 2015/2016

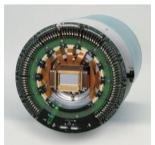
Atomic Physics, Plasma Physics, and Applied Sciences

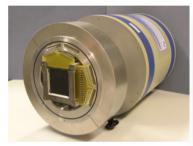
Introduction & The FAIR Facilities of APPA

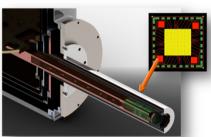
- Modularized Start Version
- The APPA Cave (MSV)
- The Storage Ring Facilities (MSV)

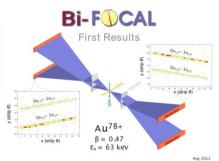
Instrumentation, Detectors and Beam Parameters (MSV)

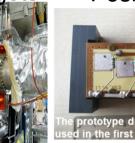
Midterm Research Program at GSI (2015 and beyond)


Conclusion

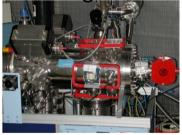


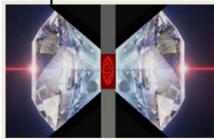

Sophisticated & Versatile Instrumentation


Observables: Photons, electrons, positrons, ions

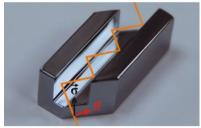


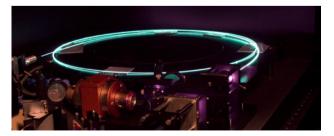
Targets


Position-sensitive solid-state detectors

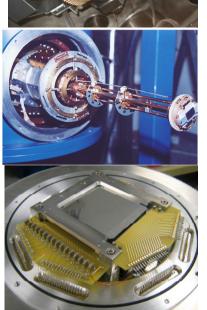

High-resolution spectrometers

Particle detectors


Particle spectrometers


High pressure cell

Traps


X-ray optics, channel-cut crystals

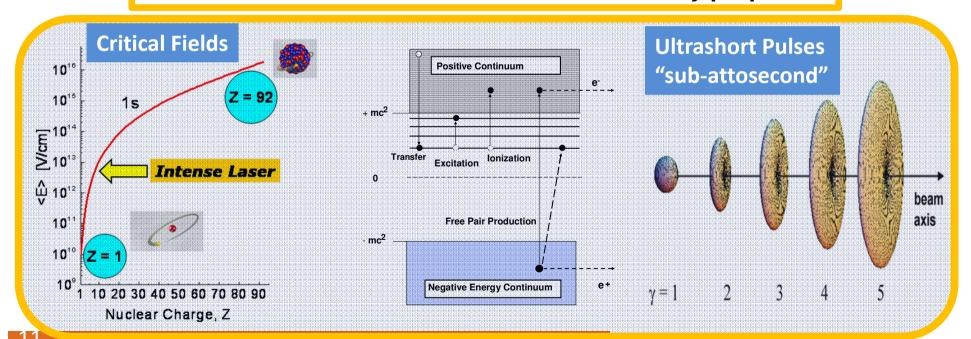
Laser systems

Status Detector Development and Construction

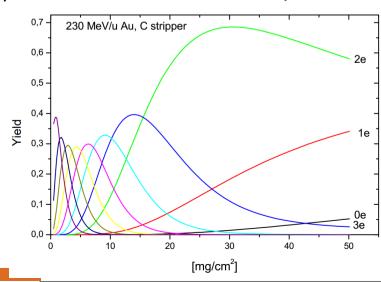
- Development of instrumentation is progressing well
- Several novel detector systems are currently getting commissioned
- Important in-kind contributions from partner institutions have been already received

❖ several APPA setups are ready to be installed and can be used in APPA cave and at HESR

Atomic & Fundamental Physics


Interplay between Relativity, Correlation, and QED in the Non-Perturbative Regime

 $\alpha Z \approx 1$



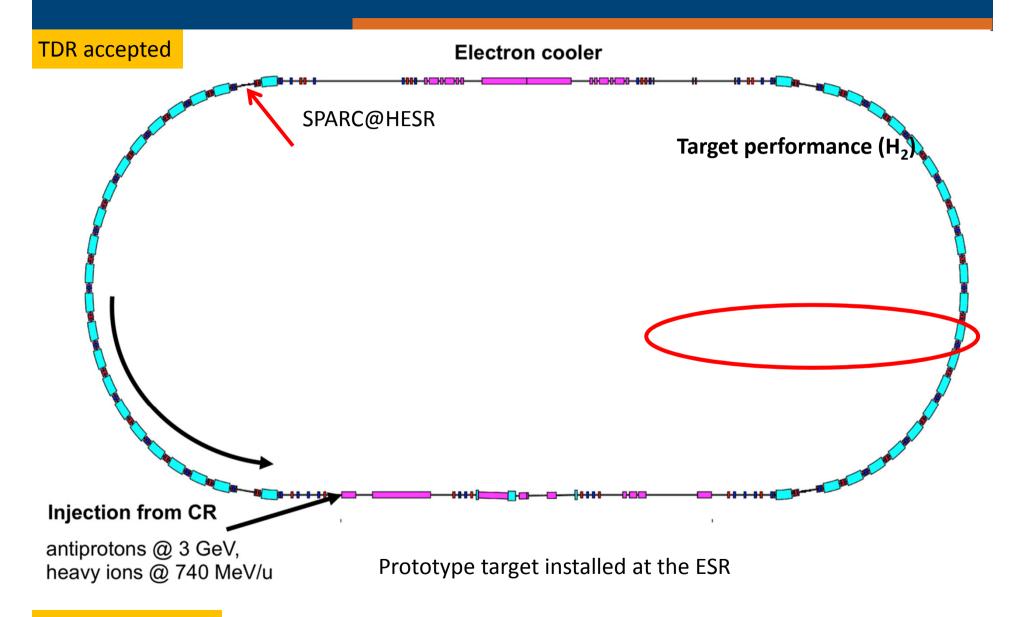
- Radiative corrections in the non-perturbative regime
- Correlated multi-body dynamics for atoms and ions
- Precision determination of fundamental constants
- Influence of atomic structure on nuclear decay properties

SPARC: Design of Stripper Foils / Charge State Tayloring

- Facilities: ESR, CRYRING, Cave A, HESR, APPA Cave
- Projectiles: all elements up to uranium
- Up to the highest possible beam energy (e.g. 10 GeV/u for U92+ at APPA Cave)
- Charge states: main focus is on bare, H-like, He-like, Li-like, Be-like
- Prefered energy for stripping (bare ions): up to 1 GeV/u
- Prefered energy for stripping (few-electron projectiles): between 200 and 400 MeV/u
 - Non-equilibrium thicknesses for stripper targets
 - Broad range of different stripper targets (from C to Nb with different thickenesses)
 - Target station

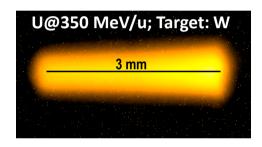
Novel Instrumentation for Atomic Physics: Towards FAIR

Instrument/ detector	Status	remarks
New internal target (micro- cluster target)	Prototype system in operation at the ESR	TDR for SPARC experiments at HESR has been accepted
Micro-calorimeter detectors	Two systems currently in development at Giessen and Heidelberg	Test experiment at the ESR in 2014
New target chamber (impact parameter)	Work in progress	A first prototype setup installed at the ESR
Diamond detectors	Work in progress	Prototypes applied in experiments
Transverse electron target	Work in progress at U. Frankfurt and Giessen	Dedicated to low beam energies
Electron spectrometer	In progress	TDR has been submitted
X-ray polarimeter	Two prototype systems available	Already applied and tested in experiments at ESR and PETRAIII
Resonant Schottky cavity	Prototype system in operation at the ESR	Already applied and tested in experiments


Novel Instrumentation for Atomic Physics: Towards FAIR

Instrument/detector	status	remarks
Novel laser setup for laser cooling	Prototype system in operation at the ESR	Applied in experiment for C3+
Improved detection system for fluorescence radiation at ESR	In operation at the ESR	Applied in HFS experiments
FOCAL spectrometer	Prototype system in operation at the ESR	Applied in experiment for Au78+

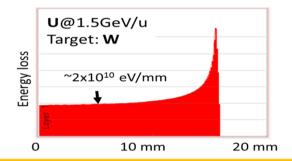
and many more: e.g. x-ray optics, traps, fluorescence spectrometer for target diagnotics etc.


In 2015: University groups received substanital funding by BMBF Verbundforschung

Target@HESR

Plasma Physics at FAIR

Interaction of ions and photons with plasmas
Equation of state, phase transitions, transport phenomena
Matter under high pressure
Coupling of intense light with matter


Warm Dense Matter

- T $\approx 0.2 10 \text{ eV}$
- ρ ≈ solid density
- P ≈ kbar, Mbar

- o large volume of sample (mm³)
- o fairly uniform physical conditions
- o high entropy @ high densities
- o high rep. rate and reproducibility
- o any target material
- FAIR will produce the largest volume of uniform WDM world wide.
- Compared to GSI, FAIR will provide a specific intensity and energy deposition increase by a factor of 100.

Plasma Physics at FAIR

Iranium beam	GSI	FAIR	
E _o	400 MeV/u	0.4 - 2.7 GeV/u	
N	4·10 ⁹	5·10 ¹¹	x 125
Ebeam	0.06 kJ	19 kJ	
τ	130 ns	70 ns	A STATE OF THE PARTY OF THE PAR
P _{beam}	0.5 GW	270 GW	x 540
Sf	~1 mm	~1 mm	
	Lead	d target	
E _s	1 kJ/g	150 kJ/g	x 150
Ps	5 GW/g	2 TW/g	x 430

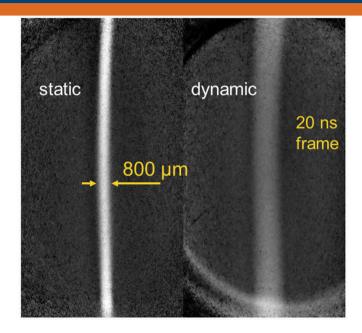
Interesting experiments are foreseen even with beam intensities much lower (10^{10} - 10^{11}) than the FAIR design value

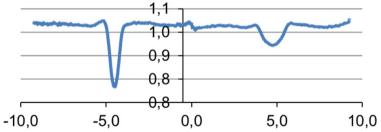
Plasma Physics at FAIR

Target: lead cylinder, I = 2 mm, $r = 300 \mu\text{m}$

Intensity U^{28+} , $\tau = 50$ ns	Focus (FWHM, mm)	E (kJ/g)	P (kbar)	T(K)
10 ¹⁰	1	1.4	180	9450
10 ¹¹	1	14	830	56000
10 ¹¹	4	0.9	103	6250

Target: frozen Hydrogen, I = 5 mm, $r = 400 \mu$ m


PRIOR Prototype: Dynamic Experiments, July 2014


Goal: to measure density distribution of expanding hot Ta for EoS studies

- Underwater electrical wire explosions (0.8 mm Ta wire in 2 cm of water).
- 35 kV, 40 MA/cm², 5 GW deposited
- WDM states in Ta: 10 kJ/g specific energy, ~2 eV temperature, ~km/s expansion velocity.
- Several dynamic experiments were performed to build a time history of the wire expansion.

Proton radiographs

Developed in collaboration with LANL, ITEP, GSI, and TU Darmstadt

PRIOR provides the highest resolution proton micrograph worldwide.

Atomic Physics, Plasma Physics, and Applied Sciences

Introduction & The FAIR Facilities of APPA

- Modularized Start Version
- The APPA Cave (MSV)
- The Storage Ring Facilities (MSV)

Instrumentation, Detectors and Beam Parameters (MSV)

Midterm Research Program at GSI (2015 and beyond)

Conclusion

Midterm research strategy for GSI

- beam time at GSI and external institutes
 - keeping scientific visibility (publications, conferences)
 - education of young scientists
 - maintaining technical expertise
 - cement ties within collaborations
 - testing detectors, concepts

essential needs

- not excessive but SECURE funding
- operation of accelerators (SIS18 and UNILAC)
- technical infrastructure: IT, laboratories, support people
- participation in national and international activities (e.g. ATHENA, LHC upgrade, High Data Federation etc.)
- support of fund raising activities
- reactivation of existing programs for young scientists

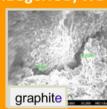
Mid-term research opportunities at GSI

(complemented by external activities)

APPA		
ESR-HITRAP- CRYRING	SPARC	Atomic physics, strong field QED, atomic collisions, border to nuclear physics
M Branch, Z0 / Cave A	BIOMAT	Biophysics, heavy ion therapy, Material Science
HHT/PRIOR PHELIX	WDM/HEDgeHOB WDM/HEDgeHOB	Plasma physics, proton radiography Plasma physics, proton acceleration
CBM		
HADES ALICE/LHC	CBM/HADES ALICE	Di-lepton production in pion-induced reactions Run 2: QGP at highest energy, x3-10 statistics. Upgrades for Run 3: Pb-Pb at 50 kHz
NUSTAR		
FRS FRS-ESR HISPEC/DESPEC R3B@SIS18 SHIP, TASCA	NUSTAR NUSTAR NUSTAR NUSTAR NUSTAR	Separator-/spectrometer expt.'s with exotic nuclei Nuclear physics with exotic beams in a storage ring In-beam and stopped-beam spectroscopy experiments Reactions with relativistic radioactive beams Physics and chemistry of SHE
PANDA External Institutes	PANDA	Search for exotic states at BESIII/Beijing/IHEP (since 2006) and JLAB/Newport (starting 2015)
GSI Helmholtzzentrum	für Schwerionenforschung GmbH	22

Mid-term research opportunities at GSI (complemented by external activities)

- Focused, continuous research at the current GSI facilities is of utmost importance for the success of the FAIR project. => GSI/FAIR needs to have an active research program for the time until FAIR is online (as requested by the scientific council, Heuer commission, and "Aufsichtsrat")
 - beam times are an important commitment of GSI/FAIR to the national and international scientific communities
 - beam time planning at GSI/FAIR must be reliable!
 - => beam times must be part of the overall project planning!



FLAIR

HEGgeHOB/WD

MAT/BIOMAT

BIO/BIOMAT

Atomic Physics, Plasma Physics, and Applied Sciences

Introduction & The FAIR Facilities of APPA

- Modularized Start Version
- The APPA Cave (MSV)
- The Storage Ring Facilities (MSV)

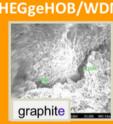
Instrumentation, Detectors and Beam Parameters (MSV)

Midterm Research Program at GSI (2015 and beyond)

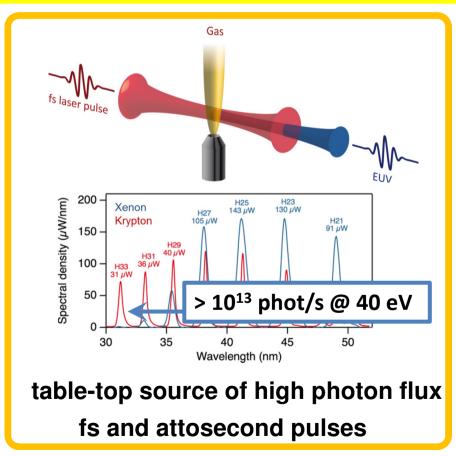
Conclusion

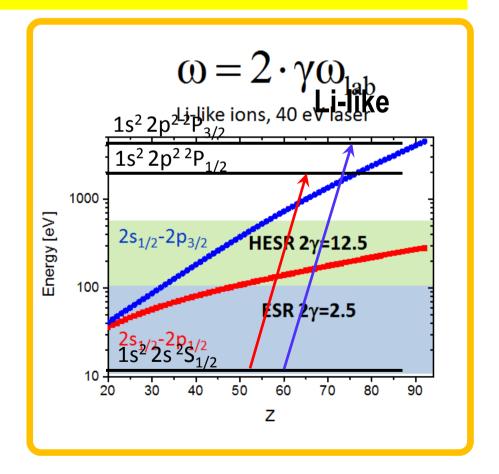
Conclusion

- For the **next decade and beyond** FAIR offers novel, worldwide unique research opportunities and challenges with large discovery potential for the interdisciplinary research fields of APPA.
- APPA will contribute significantly to the very first experiments at FAIR (CRYRING, APPA cave, HESR).
- Rapid technological advances in fields like laser, optics, x-ray detectors, and biomedical application implies a permanent scrutiny and update of the experimental methods and setups proposed by APPA. => R&D is still needed.
- Focused, continuous research at the current GSI facilities is of utmost importance for the success of the FAIR project. => GSI/FAIR needs to have an active research program for the time until FAIR is online!


Thank you for your attention!

Exchange of information between experiments and accelerator groups on a regular basis needed !!!





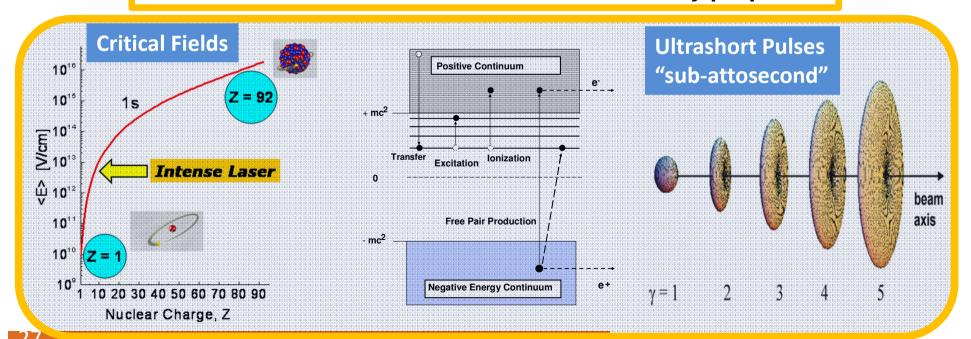
BIO/BIOMAT

Day-1: Attosecond Science / Laser Spectroscopy

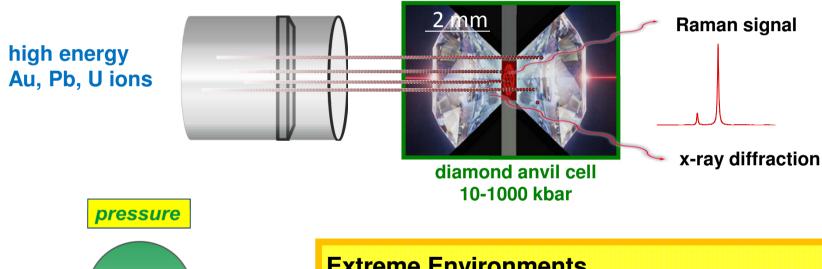
Using novel XUV laser systems, e.g. Li-like ions up to uranium are accessible!

S. Hädrich et al., Nat. Photonics 8, 779 (2014).

Atomic & Fundamental Physics


Interplay between Relativity, Correlation, and QED in the Non-Perturbative Regime

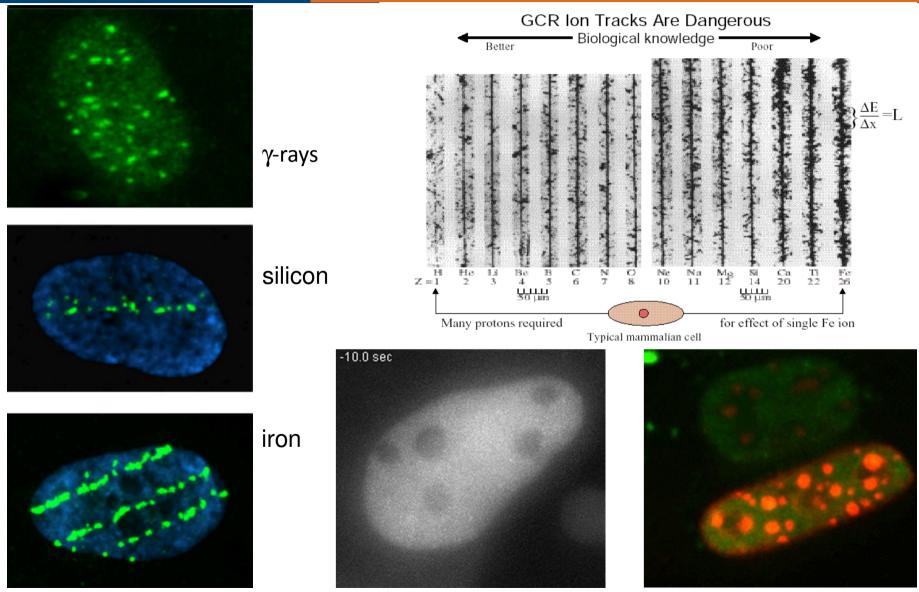
 $\alpha Z \approx 1$



- Radiative corrections in the non-perturbative regime
- Correlated multi-body dynamics for atoms and ions
- Precision determination of fundamental constants
- Influence of atomic structure on nuclear decay properties

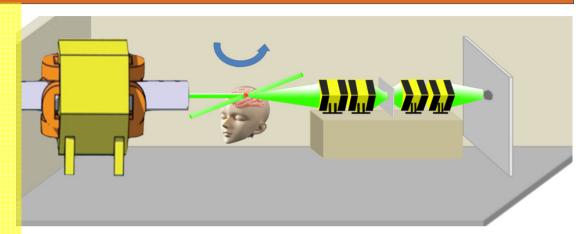
MAT: Experiments at APPA Cave

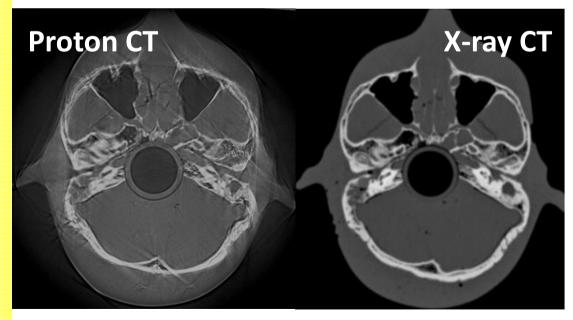
Materials under extreme conditions

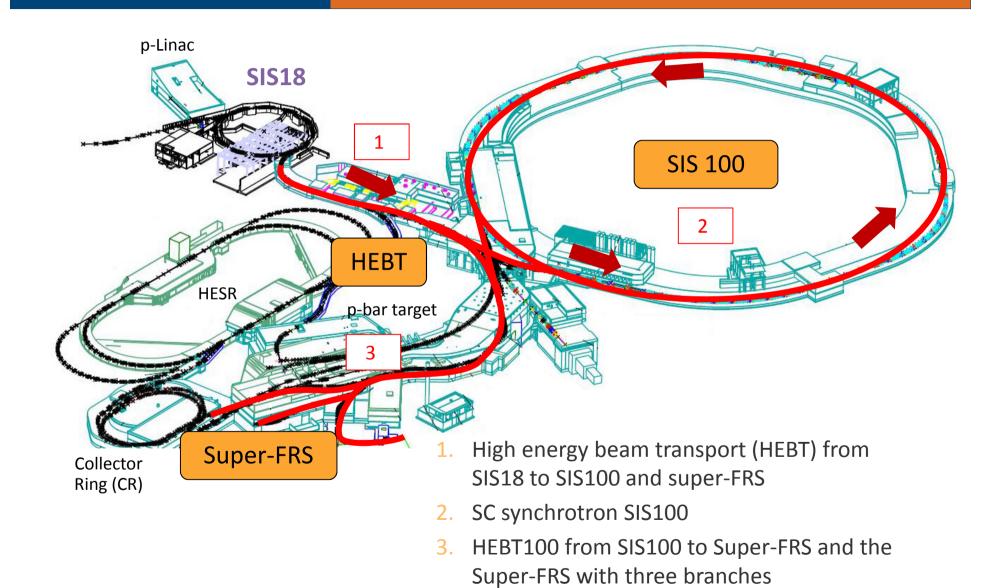

Extreme Environments

- synthesis and stabilization of new materials
- nanoscale manipulation of materials properties
- recover exotic high-pressure phases
- simulate radioactivity effects within Earth's interior

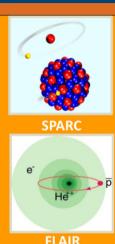
temperature

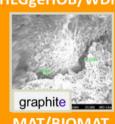

irradiation


Heavy Ion Tracks Visualized in Human Cells


Particle Therapy at FAIR

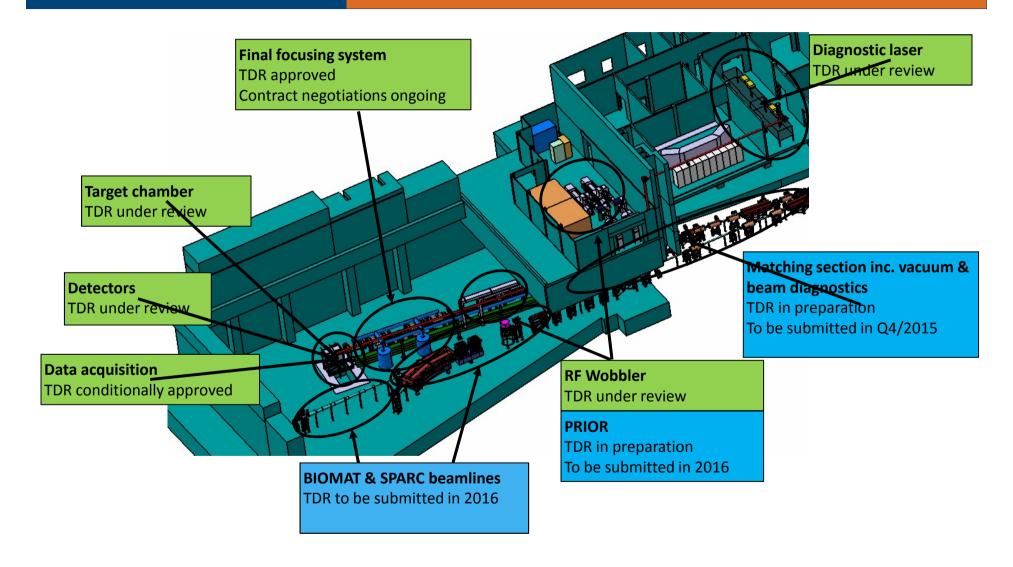
- New project (PaNTERA)
 within APPA to exploit the
 PRIOR setup for therapy
- Relativistic protons (4.5
 GeV) for image-guided, high-resolution, realtime,
 stereotactic radiosurgery
 (proton theranostics), (PRIOR setup)
- CT of phantoms and animals at LANL (800 MeV protons)
- Further plans for tests of ¹¹C and antiprotons in therapy


Scope - Staged realization along the beam towards MSV


APPA @ FAIR: Conclusion

- For the **next decade and beyond** FAIR offers novel, worldwide unique research opportunities and challenges with large discovery potential for the interdisciplinary research fields of APPA.
- APPA will contribute significantly to the very first experiments at FAIR (CRYRING, APPA cave, HESR).
- Rapid technological advances in fields like laser, optics, x-ray detectors, and biomedical application implies a permanent scrutiny and update of the experimental methods and setups proposed by APPA. => R&D is still needed.
- Focused, continuous research at the current GSI facilities is of utmost importance for the success of the FAIR project. => GSI/FAIR needs to have an active research program for the time until FAIR is online!

Thank you for your attention!



Most TDRs for first-day experiments in the APPA cave have been submitted for evaluation

33