SPARC at **FAIR**:

Experimental requests for atomic physics experiments

A. Braeuning-Demian for the SPARC Collaboration

OUTLOOK

- What makes the FAIR facility attractive for atomic physics?
- Experimental conditions:
 - locations
 - beam parameters
 - operation modes
- Ion Stripper

Investigate the limits!

Precision Investigations of ionic and atomic systems in high static and dynamic electromagnetic fields:

- non-perturbative regime
 correlated many-body dynamics
 precision determination of fundamental constants
- strong static electromagnetic fields: Highly Charged lons
- fast varying electromagnetic fields: relativistic energies ($\gamma > 1$)
- ultra short interaction times: relativistic energies (atto sec)
- strong perturbative potential fields: **low-energy HCI** (~keV/u)
- high luminosity (moderate to low beam intensity and thin targets): stored beams
- high resolution measurements: cooled beams, trapped jons / exotic systems HIC4FAIR Workshop, Hamburg, 29-31 July, 2015

Facilities for Atomic Physics at FAIR

HIC4FAIR Workshop, Hamburg, 29-31 July, 2015

APPA Cave

WDM

- Experimental area shared by ALL APPA collaborations: SPARC, BioMat, HEDgeHOB / WDM
- Fix-target experiments
- SIS 18 and SIS 100 beams are requested
- External drivers (for PP experiments, laser, RF-power)
- No parallel or block sharing operation will be possible (does not exclude cooperation: ex. PRIOR)
- BioMat and Plasma coli. will have an extensive user operation program: time windows for experiment setting will be needed HEDgeHOB/

BioMat SPARC HIC4FAIR Workshop, Hamburg, 29-31 July, 2015

APPA cave: SPARC Beam Line

SPARC at APPA cave

Beam parameters for normal operation

- Ion species: stable, mostly heavy ions (Au, Pb, U) in highest charge states; does not exclude the use of lighter ions: Ar, Xe
- Beam energies: up to 10 GeV/u for U⁹¹⁺
- **Beam intensity**: 1x 10⁸ pps
- Delivery: SIS 18 and SIS 100
- **Slow extraction**, flat top, max. pulse length
- Momentum spread: $\sim \Delta p/p = 10^{-4}$
- **Beam spot**: as small as possible (few mm²?), no hallow
- Stable beam on target

U²⁸⁺ is not an option for SPARC in APPA cave We trade intensity for beam emitance and stability Stripping after SIS 18 is required

5)Jar C

SPARC at APPA cave

For channeling experiments:

- small beam spot \rightarrow local collimation? $\stackrel{\bullet}{\geq}$
- small beam divergence
- lowest possible momentum spread
- (rel.) low beam intensity
- beam energies of few GeV/u

Experiments at cave A are still planed 2016-2020?

SPARC experiments at HESR

SPARC at **HESR**

- 1. High density Gas Target experiments
- 2. Laser spectroscopy

Ion species: p to U and radioactive beams

• Delivery: SIS 18 and SFRS

 High charge states: bare to 4 electrons→stripping after SIS18 or at SFRS

 Ion energy: 0.2 to 5 GeV/u (acceleration/ deceleration)

- Beam cooling: electron (?) and stochastic in HESR
- Injection from CR: fast, 12÷13 Tm (740 MeV/u fix energy) cooling???
- Emittance: 1 mm mrad from SIS 18

SPARC at SIS100

Large Lorenz boost of the relativistic ions

- Laser cooling
- Laser spectroscopy

In-ring experiments

No parallel operation

122 MeV/u C³⁺ ions stored in the ESR laser frequency scanning

Tests at IMP Lanzhou started in 2014

- Laser cooling:
- the technique is understood (was already tested on C^{3+} at ESR) but

- the way towards a standard cooling scheme still needs an R&D an program to investigate the possible applications: beam–laser combination

- will not be an universal tool

- the choice of the ion species and energy depends on the available laser

Sparc -

HCI production: Charge State Tayloring

Different charge states (bare to Be-like) will be required: a stripper after the SIS 18 is needed

In SIS 18 high charge states should be injected (ex. U⁷³⁺ is needed)

Stripping simulations

Stripping simulations

Stripping simulations

Uranium, 300 MeV/u, Q_{in}= 73+

-31 July, 2015

SPARC Stripper

Summary:

- Different charge states are required: bare to 3-4 electrons; no equilibrium charge states
- Striping energy rather 'low' for SPARC
- Different stripper materials (C to Nd) and thicknesses (hundreds of μm) are needed for optimum charge state yield
- Stripper rather thin \rightarrow mechanical and thermal stability: size, insertion mode, beam intensity

Conclusions:

- SPARC requirements are different from CBM's
- Not possible to work just with ONLY one stripper foil
- Production of many different charge states with similar intensities: in some cases, important part of the beam must be discarded after the stripper

Questions:

- 1. Location
- 2. Design
- 3. Operation: beam energy, parallel operation

Concluding remarks

- 1. Large variety of Experiments at different locations, no monolithic detector system \rightarrow all stations should will be used
- 2. SPARC experiments will require a large variety of beams in terms of energy, charge state and ion species; there is no 'standard' beam for atomic physics experiments
- 3. SPARC requires moderate to high beam intensities
- 4. Single-pass and in-ring experiments requires slow and fast extracted beams from SIS 18 and/or SIS100
- 5. A dedicated stripper is needed after the SIS18
- 6. The parallel operation will be challenging in APPA cave as well as in HESR
- 7. Uniqueness of the facility: HCI in storage rings in a broad energy range

Thank you for your attention!

Rad. Prot: Beam parameters for APPA cave

Errichtungsantrag APPA cave 2011

Target- punkte	Nutzer	lon	Energie [GeV/u]	Intensität [s ¹]	Strahl- dump
XPP2	Plasma- physik	2381158+	0,5	1,4E+09	XPP2SD1
XAP1	Atom- physik	238U92+	10	1E+08	XBM2SD
XAP1	Atom- physik	238U92+	1	1E+08	XAPDSD
XBM1	BIOMAT	р	10	5E+10	XBM2SD
XBM2	BIOMAT	238U28+	10	1E+10	XBM2SD

Tabelle 2: Strahlparameter der APPA-Experimente in G050 für Experimente mit Protonen und Uranlonen. Die Positionen der verschiedenen Target- und Strahldumppunkte sind in Abb. 2 dargestellt.

